Effect of Jump Direction on Joint Kinetics of Take-Off Legs in Double-Leg Rebound Jumps.
inverse dynamics
joint power
plyometric training
stretch-shortening cycle
Journal
Sports (Basel, Switzerland)
ISSN: 2075-4663
Titre abrégé: Sports (Basel)
Pays: Switzerland
ID NLM: 101722684
Informations de publication
Date de publication:
26 Jul 2019
26 Jul 2019
Historique:
received:
21
06
2019
revised:
23
07
2019
accepted:
24
07
2019
entrez:
31
7
2019
pubmed:
31
7
2019
medline:
31
7
2019
Statut:
epublish
Résumé
Vertical (VDJ) and horizontal (HDJ) double-leg rebound jumps are used as plyometric exercises in direction-specific training regimens for various sports. We investigated the effects of jump direction on joint kinetics of the take-off legs in double-leg rebound jumps. Twelve Japanese male track and field athletes performed VDJ, 100% HDJ, 50% HDJ (50% of 100% HDJ distance), and 75% HDJ (75% of 100% HDJ distance). Kinematic and kinetic data in the sagittal plane were calculated using a force platform and high-speed video camera. Hip negative power during the eccentric phase decreased from VDJ to 50% HDJ (VDJ, -4.40 ± 4.25 W/kg; 50% HDJ, -0.83 ± 2.10; 75% HDJ, -0.33 ± 0.83; 100% HDJ, 0 ± 0), while hip positive power increased from VDJ to 100% HDJ (VDJ, 4.19 ± 2.73 W/kg; 50% HDJ, 9.37 ± 2.89; 75% HDJ, 11.15 ± 3.91; 100% HDJ, 18.51 ± 9.83). Knee negative power increased from VDJ to 75% HDJ (VDJ, -14.48 ± 7.67 W/kg; 50% HDJ, -18.98 ± 7.13; 75% HDJ, -21.57 ± 8.54; 100% HDJ, -23.34 ± 12.13), while knee positive power decreased from VDJ to 75% HDJ (VDJ, 23.18 ± 9.01 W/kg; 50% HDJ, 18.83 ± 5.49; 75% HDJ, 18.10 ± 5.77; 100% HDJ, 16.27 ± 6.22). Ankle joint kinetics remained unchanged. Differences in hip and knee joint kinetics between VDJ and HDJ were associated with direction control, becoming more pronounced as jump distance increased.
Identifiants
pubmed: 31357445
pii: sports7080183
doi: 10.3390/sports7080183
pmc: PMC6722790
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Int J Sports Med. 1999 Jul;20(5):295-303
pubmed: 10452226
J Electromyogr Kinesiol. 2001 Oct;11(5):355-64
pubmed: 11595555
Int J Sports Med. 2002 Feb;23(2):136-41
pubmed: 11842362
Int J Sports Med. 2007 Jan;28(1):66-71
pubmed: 17024641
Med Sci Sports Exerc. 2008 Apr;40(4):707-15
pubmed: 18317373
J Strength Cond Res. 2008 May;22(3):944-50
pubmed: 18438217
J Sports Sci. 2009 Dec;27(14):1565-73
pubmed: 19967591
J Strength Cond Res. 2011 Jan;25(1):94-102
pubmed: 20093969
Med Sci Sports Exerc. 2011 Jul;43(7):1260-71
pubmed: 21131859
Scand J Med Sci Sports. 2012 Oct;22(5):671-83
pubmed: 21457355
J Strength Cond Res. 2011 Oct;25(10):2715-20
pubmed: 21873903
J Strength Cond Res. 2013 Nov;27(11):3011-20
pubmed: 23442288
Sports Med. 1990 Jan;9(1):7-22
pubmed: 2408119
J Sports Med Phys Fitness. 2014 Dec;54(6):691-9
pubmed: 24739258
Biol Open. 2014 Jul 04;3(8):689-99
pubmed: 24996923
Sports Biomech. 2017 Jun;16(2):187-200
pubmed: 27593193
J Strength Cond Res. 2018 May;32(5):1222-1229
pubmed: 29533358
Int J Sports Med. 2018 Sep;39(9):661-667
pubmed: 29925106
Can J Sport Sci. 1987 Mar;12(1):19-23
pubmed: 3594313
Med Sci Sports Exerc. 1987 Aug;19(4):332-8
pubmed: 3657481
Eur J Appl Physiol Occup Physiol. 1983;50(2):273-82
pubmed: 6681758