Surface-controlled dissolution rates: a case study of nanoceria in carboxylic acid solutions.


Journal

Environmental science. Nano
ISSN: 2051-8153
Titre abrégé: Environ Sci Nano
Pays: England
ID NLM: 101624843

Informations de publication

Date de publication:
01 May 2019
Historique:
entrez: 3 8 2019
pubmed: 3 8 2019
medline: 3 8 2019
Statut: ppublish

Résumé

Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution rate was proportional to nanoparticle surface area. Values of the apparent dissolution rate coefficients varied with the ligand. Both nanoceria size and shape distributions were altered by the dissolution process. Density functional theory (DFT) estimates for some possible Ce(IV) products showed that their dissolution was thermodynamically favored. However, dissolution rate coefficients did not generally correlate with energy of formation values. The surface-controlled dissolution model provides a quantitative measure for nanoparticle dissolution rates: further studies of dissolution cascades should lead to improved understanding of mechanisms and processes at nanoparticle surfaces.

Identifiants

pubmed: 31372227
doi: 10.1039/C9EN00222G
pmc: PMC6675026
mid: NIHMS1022820
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1478-1492

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM109195
Pays : United States

Déclaration de conflit d'intérêts

Conflicts of Interest There are no conflicts of interest to declare.

Références

Langmuir. 2011 May 17;27(10):6059-68
pubmed: 21500814
Environ Sci Nano. 2015 Feb 1;2(1):33-53
pubmed: 26207185
Nanotoxicology. 2015 Mar;9(2):262-70
pubmed: 24877678
Environ Sci Technol. 2018 Mar 6;52(5):2726-2734
pubmed: 29381855
Toxicol Sci. 2012 Apr;126(2):469-77
pubmed: 22240982
J Nanosci Nanotechnol. 2015 Dec;15(12):9925-37
pubmed: 26682436
Metrologia. 2018 Feb 28;55(2):254-267
pubmed: 32410745
J Phys Chem B. 2005 Feb 24;109(7):2862-72
pubmed: 16851298
Environ Pollut. 2017 Jul;226:1-11
pubmed: 28395184
Chemosphere. 2015 Jan;119:1365-1371
pubmed: 24630459
Environ Sci Technol. 2012 Jul 3;46(13):6977-84
pubmed: 22191460
J Phys Chem B. 2005 Apr 28;109(16):8263-9
pubmed: 16851966
J Mol Model. 2010 Oct;16(10):1617-23
pubmed: 20195666
Langmuir. 2007 Mar 13;23(6):3388-94
pubmed: 17295527
J Chem Phys. 2014 Feb 21;140(7):074703
pubmed: 24559356
Environ Sci Technol. 2012 May 1;46(9):4909-15
pubmed: 22482930
ACS Nano. 2013 Dec 23;7(12):10582-96
pubmed: 24266731
Environ Sci Technol. 2014 Oct 7;48(19):11413-20
pubmed: 25203482
Water Sci Technol. 2013;68(8):1745-50
pubmed: 24185055
Langmuir. 2014 Sep 30;30(38):11442-52
pubmed: 25137213
Acc Chem Res. 2013 Aug 20;46(8):1702-11
pubmed: 23286528
Langmuir. 2010 Aug 3;26(15):12505-8
pubmed: 20590108
Environ Sci Technol. 2017 Feb 21;51(4):1973-1980
pubmed: 28112928
Toxicol Sci. 2012 May;127(1):256-68
pubmed: 22367688
Part Fibre Toxicol. 2015 Apr 28;12:11
pubmed: 25927337
ACS Nano. 2017 Aug 22;11(8):8018-8025
pubmed: 28738154
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Chempluschem. 2014 Aug;79(8):1083-1088
pubmed: 26322251
Adv Exp Med Biol. 2017;947:71-100
pubmed: 28168666
Phys Chem Chem Phys. 2008 Oct 1;10(37):5730-8
pubmed: 18956108
Adv Powder Technol. 2017 Jul;28(7):1647-1659
pubmed: 29200658
Toxicol Pathol. 2018 Jan;46(1):47-61
pubmed: 29145781
Metrologia. 2013 Nov;50(6):663-678
pubmed: 26361398
J Hazard Mater. 2013 Dec 15;263 Pt 2:677-84
pubmed: 24231324
ACS Nano. 2012 Nov 27;6(11):9943-50
pubmed: 23098040
Toxicol In Vitro. 2017 Apr;40:256-263
pubmed: 28126643
Nano Lett. 2008 Nov;8(11):3899-903
pubmed: 18954125
Nanotoxicology. 2019 May;13(4):455-475
pubmed: 30729879
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Environ Pollut. 2015 Mar;198:8-14
pubmed: 25549862

Auteurs

Eric A Grulke (EA)

Chemical & Materials Engineering, University of Kentucky.

Matthew J Beck (MJ)

Chemical & Materials Engineering, University of Kentucky.
Center for Computational Sciences, University of Kentucky.

Robert A Yokel (RA)

Pharmaceutical Sciences, University of Kentucky.

Jason M Unrine (JM)

Plant and Soil Sciences, University of Kentucky.

Uschi M Graham (UM)

Pharmaceutical Sciences, University of Kentucky.

Matthew L Hancock (ML)

Chemical & Materials Engineering, University of Kentucky.

Classifications MeSH