Adenosine stress CMR perfusion imaging of the temporal evolution of perfusion defects in a porcine model of progressive obstructive coronary artery occlusion.
Adenosine
/ administration & dosage
Anesthesia
Animals
Coronary Artery Disease
/ diagnostic imaging
Disease Models, Animal
Hemodynamics
Ischemia
/ pathology
Magnetic Resonance Imaging
Male
Myocardial Infarction
/ diagnostic imaging
Perfusion
Swine
Swine, Miniature
Time Factors
Ventricular Remodeling
ameroid occlusion
animal validation
cardiac magnetic resonance
coronary artery disease
myocardial infarction
myocardial ischemia
quantitative perfusion
Journal
NMR in biomedicine
ISSN: 1099-1492
Titre abrégé: NMR Biomed
Pays: England
ID NLM: 8915233
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
03
12
2018
revised:
10
06
2019
accepted:
12
06
2019
pubmed:
3
8
2019
medline:
25
6
2020
entrez:
3
8
2019
Statut:
ppublish
Résumé
Adenosine stress CMR perfusion imaging can quantify absolute perfusion and myocardial perfusion reserve (MPR) in coronary artery disease (CAD) with higher spatial resolution than positron emission tomography, the only clinically available technique for quantitative myocardial perfusion imaging. While porcine models of CAD are excellent for studying perfusion abnormalities in chronic CAD, to date there are a limited number of studies that use quantitative perfusion for evaluation. Therefore, we developed an adenosine stress CMR protocol to evaluate the temporal evolution of perfusion defects in a porcine model of progressive obstructive CAD. 10 Yucatan minipigs underwent placement of an ameroid occluder around the left circumflex artery (LCX) to induce a progressive chronic coronary obstruction. Four animals underwent a hemodynamic dose range experiment to determine the adenosine dose inducing maximal hyperemia. Each animal had a CMR examination, including stress/rest spiral quantitative perfusion imaging at baseline and 1, 3, and 6 weeks. Late gadolinium enhancement images determined the presence of myocardial infarction, if any existed. Pixelwise quantitative perfusion maps were generated using Fermi deconvolution. The results were statistically analyzed with a repeated mixed measures model to block for physiological variation between the animals. Five animals developed myocardial infarction by 3 weeks, while three developed ischemia without an infarction. The perfusion defects were located in the inferolateral myocardium in the perfusion territory of the LCX. Stress perfusion values were higher in remote segments than both the infarcted and ischemic segments (p < 0.01). MPR values were significantly greater in the remote segments than infarcted and ischemic segments (p < 0.01). While the MPR decreased in all segments, the MPR recovered by the sixth week in the remote regions. We developed a model of progressive CAD and evaluated the temporal evolution of the development of quantitative perfusion defects. This model will serve as a platform for understanding the development of perfusion abnormalities in chronic occlusive CAD.
Substances chimiques
Adenosine
K72T3FS567
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e4136Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL131919
Pays : United States
Organisme : NHLBI NIH HHS
ID : K23 HL112910
Pays : United States
Informations de copyright
© 2019 John Wiley & Sons, Ltd.
Références
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29-e322. https://doi.org/10.1161/CIR.0000000000000152
Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886-895. https://doi.org/10.1056/NEJMoa0907272
Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia: results from the National Heart, lung and blood institute WISE (Women's ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825-2832. https://doi.org/10.1016/j.jacc.2010.01.054
Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021-1031. https://doi.org/10.1007/s10554-017-1084-4
Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative assessment of myocardial blood flow-clinical and research applications. Semin Nucl Med. 2014;44(4):274-293. https://doi.org/10.1053/j.semnuclmed.2014.04.002
Berman DS, Kang X, Gransar H, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16(1):45-53. https://doi.org/10.1007/s12350-008-9018-0
Kamiya K, Sakakibara M, Asakawa N, et al. Cardiac magnetic resonance performs better in the detection of functionally significant coronary artery stenosis compared to single-photon emission computed tomography and dobutamine stress echocardiography. Circ J. 2014;78(10):2468-2476.
Slomka P, Berman DS, Alexanderson E, Germano G. The role of PET quantification in cardiovascular imaging. Clin Trans Imaging. 2014;2(4):343-358. https://doi.org/10.1007/s40336-014-0070-2
Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5(1):35-46. https://doi.org/10.2217/iim.13.1
Hsu L-Y, Jacobs M, Benovoy M, et al. Diagnostic performance of fully automated pixel-wise quantitative myocardial perfusion imaging by cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2018;11(5):697-707. https://doi.org/10.1016/j.jcmg.2018.01.005
Ta AD, Hsu L-Y, Conn HM, et al. Fully quantitative pixel-wise analysis of cardiovascular magnetic resonance perfusion improves discrimination of dark rim artifact from perfusion defects associated with epicardial coronary stenosis. J Cardiovasc Magn Reson. 2018;20(1):16. https://doi.org/10.1186/s12968-018-0436-0
Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1180-1193. https://doi.org/10.1016/j.jcmg.2017.08.005
Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2(5):412-424. https://doi.org/10.1161/CIRCIMAGING.109.854893
Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187-1226. https://doi.org/10.1007/s12350-016-0522-3
Bache RJ, Schwartz JS. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation. 1982;65(5):928-935. https://doi.org/10.1161/01.CIR.65.5.928
Schuleri KH, Boyle AJ, Centola M, et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp Med. 2008;58(6):568-579.
White FC, Carroll SM, Magnet A, Bloor CM. Coronary collateral development in swine after coronary artery occlusion. Circ Res. 1992;71(6):1490-1500. https://doi.org/10.1161/01.RES.71.6.1490
Carroll SM, White FC, Roth DM, Bloor CM. Heparin accelerates coronary collateral development in a porcine model of coronary artery occlusion. Circulation. 1993;88(1):198-207. https://doi.org/10.1161/01.CIR.88.1.198
Jones JJ, Dietz NJ, Heaps CL, Parker JL, Sturek M. Calcium buffering in coronary smooth muscle after chronic occlusion and exercise training. Cardiovasc Res. 2001;51(2):359-367. https://doi.org/10.1016/S0008-6363(01)00305-4
Li J, De Leon H, Ueno T, et al. Vasomotor function of pig coronary arteries after chronic coronary occlusion. J Cardiovasc Pharmacol. 2003;41(4):600-608.
Mannheim D, Versari D, Daghini E, et al. Impaired myocardial perfusion reserve in experimental hypercholesterolemia is independent of myocardial neovascularization. Am J Physiol Heart Circ Physiol. 2007;292(5):H2449-H2458. https://doi.org/10.1152/ajpheart.01215.2006
Salerno M, Sica CT, Kramer CM, Meyer CH. Optimization of spiral-based pulse sequences for first-pass myocardial perfusion imaging. Magn Reson Med. 2011;65(6):1602-1610. https://doi.org/10.1002/mrm.22746
Yang Y, Kuruvilla S, Meyer CH, Kramer CM, Salerno M. Quantification of myocardial perfusion with spiral pulse sequences. J Cardiovasc Magn Reson. 2013;15(1):E12. https://doi.org/10.1186/1532-429X-15-S1-E12
Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20(1):14. https://doi.org/10.1186/s12968-018-0435-1
Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med. 2010;64(2):457-471. https://doi.org/10.1002/mrm.22428
Cernicanu A, Axel L. Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies. Acad Radiol. 2006;13(6):686-693. https://doi.org/10.1016/j.acra.2006.02.040
Jerosch-Herold M, Wilke N, Stillman AE, Wilson RF. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25(1):73-84. https://doi.org/10.1118/1.598163
Lopez D, Pan JA, Pollak PM, et al. Multiparametric CMR imaging of infarct remodeling in a percutaneous reperfused Yucatan mini-pig model. NMR Biomed. 2017;30(5). https://doi.org/10.1002/nbm.3693
Larach DR, Schuler HG. Direct vasodilation by sevoflurane, isoflurane, and halothane alters coronary flow reserve in the isolated rat heart. Anesthesiol J am Soc Anesthesiol. 1991;75(2):268-278.
van den Heuvel AFM, Bax JJ, Blanksma PK, Vaalburg W, Crijns HJGM, van Veldhuisen DJ. Abnormalities in myocardial contractility, metabolism and perfusion reserve in non-stenotic coronary segments in heart failure patients. Cardiovasc Res. 2002;55(1):97-103.
van Veldhuisen DJ, van den Heuvel AFM, Blanksma PK, Crijns HJGM. Ischemia and left ventricular dysfunction: a reciprocal relation? J Cardiovasc Pharmacol. 1998;32:S46.
Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330(25):1782-1788. https://doi.org/10.1056/NEJM199406233302503
Ghugre NR, Pop M, Barry J, Connelly KA, Wright GA. Quantitative magnetic resonance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magn Reson Med. 2013;70(4):1095-1105. https://doi.org/10.1002/mrm.24531
Merkus D, Duncker DJ. Coronary microvascular dysfunction in post-infarct remodelled myocardium. Eur Heart J Suppl. 2014;16(Suppl A):A74-A79. https://doi.org/10.1093/eurheartj/sut016
Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23(3):606-639. https://doi.org/10.1007/s12350-015-0387-x
Long X, Mokelke EA, Neeb ZP, Alloosh M, Edwards JM, Sturek M. Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J Pharmacol Exp Ther. 2010;335(3):781-787. https://doi.org/10.1124/jpet.110.170803
Do HP, Ramanan V, Qi X, et al. Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction. J Cardiovasc Magn Reson. 2018;20(1):45. https://doi.org/10.1186/s12968-018-0468-5
Mordini FE, Haddad T, Hsu L-Y, et al. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment. JACC Cardiovasc Imaging. 2014;7(1):14-22. https://doi.org/10.1016/j.jcmg.2013.08.014
Bache RJ, Tockman BA. Effect of nitroglycerin and nifedipine on subendocardial perfusion in the presence of a flow-limiting coronary stenosis in the awake dog. Circ Res. 1982;50(5):678-687.
Fearon WF, Balsam LB, Farouque HMO, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107(25):3129-3132. https://doi.org/10.1161/01.CIR.0000080700.98607.D1
Lee B-K, Lim H-S, Fearon WF, et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131(12):1054-1060. https://doi.org/10.1161/CIRCULATIONAHA.114.012636
Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med. 2010;60(4):300-315.
Witczak CA, Mokelke EA, Boullion R, Wenzel J, Keisler DH, Sturek M. Noninvasive measures of body fat percentage in male Yucatan swine. Comp Med. 2005;55(5):445-451.
Robinson BJ, Ebert TJ, O'Brien TJ, Colinco MD, Muzi M. Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology. 1997;86(1):64-72.
Boodhwani M, Mieno S, Voisine P, et al. High-dose atorvastatin is associated with impaired myocardial angiogenesis in response to vascular endothelial growth factor in hypercholesterolemic swine. J Thorac Cardiovasc Surg. 2006;132(6):1299-1306. https://doi.org/10.1016/j.jtcvs.2006.05.060
Möhlenkamp S, Lerman LO, Lerman A, et al. Minimally invasive evaluation of coronary microvascular function by electron beam computed tomography. Circulation. 2000;102(19):2411-2416.