Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action.

brainstem magnetic resonance imaging neurological rehabilitation physical stimulation sensorimotor cortex

Journal

Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481

Informations de publication

Date de publication:
2019
Historique:
received: 12 03 2019
accepted: 27 06 2019
entrez: 6 8 2019
pubmed: 6 8 2019
medline: 6 8 2019
Statut: epublish

Résumé

Sustained pressure stimulation of the body surface has been used in several physiotherapeutic techniques, such as reflex locomotion therapy. Clinical observations of global motor responses and subsequent motor behavioral changes after stimulation in certain sites suggest modulation of central sensorimotor control, however, the neuroanatomical correlates remain undescribed. We hypothesized that different body sites would specifically influence the sensorimotor system during the stimulation. We tested the hypothesis using functional magnetic resonance imaging (fMRI) in thirty healthy volunteers (mean age 24.2) scanned twice during intermittent manual pressure stimulation, once at the right lateral heel according to reflex locomotion therapy, and once at the right lateral ankle (control site). A flexible modeling approach with finite impulse response basis functions was employed since non-canonical hemodynamic response was expected. Subsequently, a clustering algorithm was used to separate areas with differential timecourses. Stimulation at both sites induced responses throughout the sensorimotor system that could be mostly separated into two anti-correlated subsystems with transient positive or negative signal change and rapid adaptation, although in heel stimulation, insulo-opercular cortices and pons showed sustained activation. In direct voxel-wise comparison, heel stimulation was associated with significantly higher activation levels in the contralateral primary motor cortex and decreased activation in the posterior parietal cortex. Thus, we demonstrate that the manual pressure stimulation affects multiple brain structures involved in motor control and the choice of stimulation site impacts the shape and amplitude of the blood oxygenation level-dependent response. We further discuss the relationship between the affected structures and behavioral changes after reflex locomotion therapy.

Identifiants

pubmed: 31379481
doi: 10.3389/fnins.2019.00722
pmc: PMC6650750
doi:

Types de publication

Journal Article

Langues

eng

Pagination

722

Références

Neuroimage. 1999 Apr;9(4):416-29
pubmed: 10191170
Stroke. 1999 Jul;30(7):1384-9
pubmed: 10390311
Hum Brain Mapp. 1999;8(2-3):109-14
pubmed: 10524601
J Comp Neurol. 2001 Jul 2;435(3):291-310
pubmed: 11406813
Neuroimage. 2001 Dec;14(6):1370-86
pubmed: 11707093
J Physiol. 2002 Apr 15;540(Pt 2):623-33
pubmed: 11956348
Neuroimage. 2002 Aug;16(4):1028-37
pubmed: 12202090
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Magn Reson Med. 2003 Jan;49(1):193-7
pubmed: 12509838
J Physiol. 2003 Sep 1;551(Pt 2):649-60
pubmed: 12821723
Neuroimage. 2004 Apr;21(4):1732-47
pubmed: 15050594
Eur J Pain. 2005 Aug;9(4):463-84
pubmed: 15979027
J Neurophysiol. 2005 Nov;94(5):3037-45
pubmed: 16222071
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
J Neurosci. 2006 May 24;26(21):5819-24
pubmed: 16723540
J Neurophysiol. 2007 Feb;97(2):1633-41
pubmed: 17135476
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):58-66
pubmed: 17354756
Neuroimage. 2007 Jul 1;36(3):511-21
pubmed: 17499520
Neuroimage. 2008 Jan 15;39(2):786-92
pubmed: 18029199
J Neurol Sci. 2008 Dec 15;275(1-2):51-9
pubmed: 18760809
J Neurosci. 2008 Dec 31;28(53):14347-57
pubmed: 19118167
Nat Rev Neurosci. 2009 May;10(5):345-59
pubmed: 19352402
Neuroimage. 2010 May 1;50(4):1589-98
pubmed: 20034578
J Neurosci. 2010 Mar 24;30(12):4285-94
pubmed: 20335464
Brain Struct Funct. 2010 Jun;214(5-6):519-34
pubmed: 20512376
Clin Neurophysiol. 2011 Mar;122(3):456-463
pubmed: 20739217
Neuroimage. 2011 Feb 1;54(3):1786-94
pubmed: 20965257
Brain Res Bull. 2011 Feb 1;84(2):157-62
pubmed: 21147201
Eur J Appl Physiol. 2011 Dec;111(12):3051-9
pubmed: 21455615
Clin Neurophysiol. 2012 Jan;123(1):193-9
pubmed: 21764634
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Magn Reson Imaging. 2012 Jul;30(6):837-47
pubmed: 22495237
Magn Reson Med. 2013 Apr;69(4):1194-9
pubmed: 22678849
BMC Complement Altern Med. 2013 May 27;13:114
pubmed: 23711332
J Neurosci. 2013 Jun 19;33(25):10503-11
pubmed: 23785162
Mov Disord. 2013 Sep 15;28(11):1483-91
pubmed: 24132836
Eur J Neurosci. 2014 Apr;39(8):1332-42
pubmed: 24417550
Neuroimage. 2014 Jul 1;94:263-274
pubmed: 24632092
BMC Neurosci. 2014 Mar 21;15:43
pubmed: 24649878
Brain Imaging Behav. 2015 Jun;9(2):236-44
pubmed: 24728839
J Neurophysiol. 2014 Nov 15;112(10):2505-28
pubmed: 25143539
Nat Rev Neurosci. 2015 Jan;16(1):55-61
pubmed: 25406711
J Neurophysiol. 2015 Apr 1;113(7):2592-604
pubmed: 25652926
Neuroimage. 2015 May 15;112:278-287
pubmed: 25770990
Neuroimage. 2015 May 15;112:267-277
pubmed: 25770991
J Neurophysiol. 2015 Oct;114(4):2152-61
pubmed: 26180117
Front Hum Neurosci. 2015 Jul 14;9:407
pubmed: 26236220
Hum Brain Mapp. 2015 Nov;36(11):4346-4360
pubmed: 26252509
BMC Neurosci. 2015 Oct 29;16:71
pubmed: 26514637
Spine J. 2016 Dec;16(12):1598-1630
pubmed: 26707074
Evid Based Complement Alternat Med. 2016;2016:3685785
pubmed: 27242911
Sci Rep. 2016 Nov 22;6:37301
pubmed: 27874038
Neuroimage. 2017 Feb 15;147:390-408
pubmed: 27993672
Neuropsychologia. 2017 Oct;105:70-83
pubmed: 28057458
Cereb Cortex. 2017 Feb 1;27(2):962-980
pubmed: 28168279
Neuroscience. 2017 Apr 21;348:11-22
pubmed: 28229931
J Phys Ther Sci. 2017 Feb;29(2):301-306
pubmed: 28265162
Cochrane Database Syst Rev. 2018 Mar 28;3:CD009290
pubmed: 29589380
Medicine (Baltimore). 2018 Mar;97(13):e0253
pubmed: 29595683
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018 Sep;162(3):206-211
pubmed: 29795544
Annu Rev Neurosci. 1985;8:233-61
pubmed: 2984978
Neuroimage. 2018 Nov 1;181:279-291
pubmed: 29935223
Cereb Cortex. 2018 Nov 1;28(11):4105-4119
pubmed: 30215693
Z Orthop Ihre Grenzgeb. 1973 Jun;111(3):268-91
pubmed: 4269937
Z Orthop Ihre Grenzgeb. 1974 Apr;112(2):361-5
pubmed: 4276751
Neuropsychologia. 1971 Mar;9(1):97-113
pubmed: 5146491
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5969-72
pubmed: 7597062
Ann Neurol. 1996 Sep;40(3):367-78
pubmed: 8797526

Auteurs

Pavel Hok (P)

Department of Neurology, University Hospital Olomouc, Olomouc, Czechia.
Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia.

Jaroslav Opavský (J)

Department of Physiotherapy, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia.

René Labounek (R)

Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia.
Department of Biomedical Engineering, University Hospital Olomouc, Olomouc, Czechia.

Miroslav Kutín (M)

KM KINEPRO PLUS s.r.o., Olomouc, Czechia.

Martina Šlachtová (M)

Department of Physiotherapy, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia.

Zbyněk Tüdös (Z)

Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia.
Department of Radiology, University Hospital Olomouc, Olomouc, Czechia.

Petr Kaňovský (P)

Department of Neurology, University Hospital Olomouc, Olomouc, Czechia.
Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia.

Petr Hluštík (P)

Department of Neurology, University Hospital Olomouc, Olomouc, Czechia.
Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia.

Classifications MeSH