Current status of countermeasures for infectious diseases and resistant microbes in the field of urology.


Journal

International journal of urology : official journal of the Japanese Urological Association
ISSN: 1442-2042
Titre abrégé: Int J Urol
Pays: Australia
ID NLM: 9440237

Informations de publication

Date de publication:
12 2019
Historique:
received: 17 05 2019
accepted: 17 07 2019
pubmed: 6 8 2019
medline: 22 9 2020
entrez: 6 8 2019
Statut: ppublish

Résumé

A worldwide increase in antimicrobial-resistant microbes due to the improper use of antimicrobial agents, along with a lack of progress in developing new antimicrobials, is becoming a societal problem. Although carbapenem-resistant Enterobacteriaceae, which are resistant to carbapenem antimicrobials, first appeared in 1993, treatment options remain limited. Mechanisms behind antimicrobial resistance involve changes to microbial outer membranes, drug efflux pump abnormalities, β-lactamase production and the creation of biofilms around cell bodies. Genetic information related to these forms of antimicrobial resistance exists on chromosomes and plasmids, and when located on the latter can easily be transmitted to other strains, no matter the species, which creates a risk of antimicrobial resistance spreading exceptionally rapidly. To prevent the spread of antimicrobial resistance, the World Health Organization in 2015 published an action plan on antimicrobial resistance, based on which World Health Organization member countries have laid out specific policies and targets. Urinary tract infections are a type of healthcare-associated infection, and the sexually transmitted disease pathogen, Neisseria gonorrhoeae, has been included in a list of microbes that pose a risk to human health published by the US Centers for Disease Control and Prevention. Urologists face numerous problems when attempting to use antimicrobials properly, which is one method of dealing with antimicrobial resistance. Therefore, this article describes the current state of resistant microbes associated with urinary tract infections and countermeasures for antimicrobial resistance, including new antimicrobials.

Identifiants

pubmed: 31382322
doi: 10.1111/iju.14087
doi:

Substances chimiques

Anti-Bacterial Agents 0
Bacterial Proteins 0
Carbapenems 0
beta-Lactamases EC 3.5.2.6
carbapenemase EC 3.5.2.6

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1090-1098

Informations de copyright

© 2019 The Japanese Urological Association.

Références

Weiner LM, Webb AK, Limbago B et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect. Control Hosp. Epidemiol. 2016; 37: 1288-301.
Castanheira M, Mendes RE, Jones RN, Sader HS. Changes in the frequencies of β-lactamase genes among enterobacteriaceae isolates in U.S. Hospitals, 2012 to 2014. Activity of ceftazidime-avibactam tested against β-lactamase-producing isolates. Antimicrob. Agents Chemother. 2016; 60: 4770-7.
Takesue Y, Kusachi S, Mikamo H et al. Antimicrobial susceptibility of pathogens isolated from surgical site infections in Japan: comparison of data from nationwide surveillance studies conducted in 2010 and 2014-2015. J. Infect. Chemother. 2017; 23: 339-48.
Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. [Cited 22 Feb 2019.] Available from URL: https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf
Abdelsattar ZM, Krapohl G, Alrahmani L et al. Postoperative burden of hospital-aquired Clostridium difficile infection. Infect. Control Hosp. Epidemiol. 2015; 36: 40-6.
Harries RL, Ansell J, Codd RJ, Williams GL. A systematic review of Clostridium difficle infection following reversal of ileostomy. Colorectal Dis. 2017; 19: 881-7.
Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficle infection: update of systematic review and meta-analysis. J. Antimicrob. Chemother. 2014; 69: 881-91.
Deshpande A, Pasupuleti V, Thota P et al. Community-associated Clostridium difficle infection and antibiotics: a meta-analysis. J. Antimicrob. Chemother. 2013; 68: 1951-61.
Thomas C, Stevenson M, Rilley TV. Antibiotics and hospital-acquired Clostridium difficle-associated diarrhea: a systematic review. J. Antimicrob. Chemother. 2003; 51: 1339-50.
Queena AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 2007; 20: 440-58.
Koyano S, Saito R, Nagai R et al. Molecular characterization of carbapenemase-producing clinical isolates of Enterobacteriaceae in a teaching hospital. Jpn. J. Med. Microbiol. 2013; 62: 446-50.
Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010; 10: 597-602.
Munoz-Price LS, Poirel L, Bonomo RA et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 2013; 13: 785-96.
Justo-Quintas J, Medina-Polo J, Gil-Moradillo J, Jaen-Herreros F, Lara-Isra A, Tejido-Sanchez A. Infections by carbapenemase-producing enterobacteriaceae in a department of urology. A new challenge. Actas Urol. Esp. 2018; 42: 170-5.
Lopez-Gonzalez L, Candel FJ, Vinuela-Prieto JM et al. Useful independent factors for distinguish infection and colonization in patients with urinary carbapenemase-producing Enterobacteriaceae isolation. Rev. Esp. Quimioter. 2017; 30: 450-7.
O'Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. The review on antimicrobial resitance, London, 2014.
Centers for Disease Control and Prevention. III. Precautions to prevent transmission of infectious agents. [Cited 27 Jul 2019.] Available from URL: https://www.cdc.gov/infectioncontrol/guidelines/isolation/precautions.html
Centers for Disease Control and Prevention. Biggest threats and data. [Cited 22 Feb 2019.] Available from URL: https://www.cdc.gov/drugresistance/biggest_threats.html
Schneede P, Tenke P, Hofstetter AG. Sexually transmitted diseases (STDs)-a synoptic overview for urologists. Eur. Urol. 2003; 44: 1-7.
Satterwhite CL, Torrone E, Meites E et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex. Transm. Dis. 2013; 40: 187-93.
Hermodson MA, Chen KC, Buchanan TM. Neisseria pili proteins: amino-terminal amino acid sequences and identification of an unusual amino acid. Biochemistry 1978; 17: 442-5.
Lambden PR, Heckels JE, James LT, Watt PJ. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 1979; 114: 305-12.
Heckels JE. Structural comparison of Neisseria gonorrhoeae outer membrane proteins. J. Bacteriol. 1981; 145: 736-42.
Swanson J, Barrera O. Immunological characteristics of gonococcal outer membrane protein II assessed by immunoprecipitation, immunoblotting, and coagglutination. J. Exp. Med. 1983; 157: 1405-20.
Swanson J. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J. Exp. Med. 1973; 137: 571-89.
Stern A, Brown M, Nickel P, Meyer TF. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 1986; 47: 61-71.
Ameyama S, Onodera S, Takahata M et al. Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob. Agents Chemother. 2002; 46: 3744-9.
Barry PM, Klausner JD. The use of cephalosporins for gonorrhea: the impending problem of resistance. Expert Opin. Pharmacother. 2009; 10: 555-77.
Golparian D, Hellmark B, Fredlund H, Unemo M. Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sex. Transm. Infect. 2010; 86: 454-60.
Ito M, Deguchi T, Mizutani K.S. et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in central Japan. Antimicrob. Agents Chemother. 2005; 49: 137-43.
Kirkcaldy RD, Ballard RC, Dowell D. Gonococcal resistance: are cephalosporins next? Curr. Infect. Dis. Rep. 2011; 13: 196-204.
Lee SG, Lee H, Jeong SH et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J. Antimicrob. Chemother. 2010; 65: 669-75.
Lewis DA. The gonococcus fights back: is this time a knock out? Sex. Transm. Infect. 2010; 86: 415-21.
Lindberg R, Fredlund H, Nicholas R, Unemo M. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob. Agents Chemother. 2007; 51: 2117-22.
Spratt BG. Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 1988; 332: 173-6.
Ohnishi M, Saika T, Hoshina S et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 2011; 17: 148-9.
Ohnishi M, Golparian D, Shimuta K et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 2011; 55: 3538-45.
Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime-and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 2012; 56: 1273-80.
Camara J, Serra J, Ayats J et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 2012; 67: 1858-60.
Lahra MM, Ryder N, Whiley DM. A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N. Engl. J. Med. 2014; 371: 1850-1.
Shimuta K, Unemo M, Nakayama S et al. Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. Antimicrob. Agents Chemother. 2013; 57: 5225-32.
Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2016: Gonococcal Isolate Surveillance Project (GISP). [Cited 22 Feb 2019.] Available from URL: https://www.cdc.gov/std/stats16/gisp2016/docs/gisp_2016_supplement_final_2018.pdf
Centers for Disease Control and Prevention. 2015 Sexually transmitted disease treatment guidelines. [Cited 22 Feb 2019.] Available from URL: https://www.cdc.gov/std/tg2015/gonorrhea.htm
European Association of Urology. Urological infection. [Cited 22 Feb 2019.] Available from URL: https://uroweb.org/guideline/urological-infections/#3_10
Taylor SN, Marrazzo J, Batteiger BE et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med. 2018; 379: 1835-45.
Tuite AR, Gift TL, Chesson HW, Hsu K, Salomon JA, Grad YH. Impact of rapid susceptibility testing and antibiotic selection strategy on the emergence and spread of antibiotic resistance in gonorrhea. J. Infect. Dis. 2017; 216: 1141-9.
Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from Chrysalis to multicolored butterfly. Clin. Microbiol. Rev. 2011; 24: 498-514.
Taylor-Robinson D, Tully JG, Furr PM, Cole RM, Rose DL, Hanna NF. Urogenital mycoplasma infections of man: a review with observations on a recently discovered mycoplasma. Isr. J. Med. Sci. 1981; 17: 524-30.
Tully JG, Rose DL, Whitcomb RF, Wenzel RP. Enhanced isolation of Mycoplasma pneumoniae from throat washings with a newly modified culture medium. J. Infect. Dis. 1979; 139: 478-82.
Tully J, Cole R, Taylor-Robinson D, Rose D. A newly discovered mycoplasma in the human urogenital tract. Lancet 1981; 317: 1288-91.
Tully JG, Taylor-Robinson D, Rose DL, Cole RM, Bove JM. Mycoplasma genitalium, a new species from the human urogenital tract. Int. J. Syst. Bacteriol. 1983; 33: 387-96.
Jensen JS, Hansen HT, Lind K. Isolation of Mycoplasma genitalium strains from the male urethra. J. Clin. Microbiol. 1996; 34: 286-91.
Andersen B, Sokolowski I, Østergaard L, Moller JK, Olesen F, Jensen JS. Mycoplasma genitalium: prevalence and behavioural risk factors in the general population. Sex. Transm. Infect. 2007; 83: 237-41.
Oakeshott P, Aghaizu A, Hay P et al. Is Mycoplasma genitalium in women the “new chlamydia?” A community-based prospective cohort study. Clin. Infect. Dis. 2010; 51: 1160-6.
Manhart LE, Holmes KK, Hughes JP, Houston LS, Totten PA. Mycoplasma genitalium among young adults in the United States: an emerging sexually transmitted infection. Am. J. Public Health 2007; 2007: 1118-25.
Taylor-Robinson D, Gilroy CB, Jensen JS. The biology of Mycoplasma genitalium. Venereology 2000; 2000: 119-27.
Bradshaw CS, Chen MY, Fairley CK. Persistence of Mycoplasma genitalium following azithromycin therapy. PLoS One 2008; 3: e3618.
Falk L, Fredlund H, Jensen JS. Tetracycline treatment does not eradicate Mycoplasma genitalium. Sex. Transm. Infect. 2003; 79: 318-9.
Jensen JS. Single-dose azithromycin treatment for Mycoplasma genitalium-positive urethritis: best but not good enough. Clin. Infect. Dis. 2009; 48: 1655-6.
Twin J, Jensen JS, Bradshaw CS et al. Transmission and selection of macrolide resistant Mycoplasma genitalium infections detected by rapid high resolution melt analysis. PLoS One 2012; 7: e35593.
Couldwell DL, Tagg KA, Jeoffreys NJ, Gilbert GL. Failure of moxifloxacin treatment in Mycoplasma genitalium infections due to macrolide and fluoroquinolone resistance. Int. J. STD AIDS 2013; 24: 822-8.
Tabrizi SN, Tan LY, Walker S et al. Multiplex assay for simultaneous detection of Mycoplasma genitalium and macrolide resistance using plexZyme and plexPrime technology. PLoS One 2016; 11: e0156740.
Tabrizi SN, Su J, Bradshaw CS et al. Prospective evaluation of resistance plus MG, a new multiplex quantitative PCR assay for detection of Mycoplasma genitalium and macrolide resistance. J. Clin. Microbiol. 2017; 55: 1915-9.
Jensen JS, Cusini M, Gomberg M, Moi H. 2016 European guideline on Mycoplasma genitalium infections. J. Eur. Acad. Dermatol. Venereol. 2016; 30: 1650-6.
Bissessor M, Tabrizi SN, Twin J et al. Macrolide resistance and azithromycin failure in a Mycoplasma genitalium-infected cohort and response of azithromycin failures to alternative antibiotic regimens. Clin. Infect. Dis. 2015; 60: 1228-36.
Guschin A, Ryzhikh P, Rumyantseva T, Gomberg M, Unemo M. Treatment efficacy, treatment failures and selection of macrolide resistance in patients with high load of Mycoplasma genitalium during treatment of male urethritis with josamycin. BMC Infect. Dis. 2015; 15: 40.
Ito S, Yasuda M, Seike K et al. Clinical and microbiological outcomes in treatment of men with non-gonococcal urethritis with a 100-mg twice-daily dose regimen of sitafloxacin. J. Infect. Chemother. 2012; 18: 414-8.
Takahashi S, Hamasuna R, Yasuda M et al. Clinical efficacy of sitafloxacin 100 mg twice daily for 7 days for patients with non-gonococcal urethritis. J. Infect. Chemother. 2013; 19: 941-5.
Waites KB, Crabb DM, Duffy LB, Huband MD. In vitro antibacterial activity of AZD0914 against human Mycoplasmas and Ureaplasmas. Antimicrob. Agents Chemother. 2015; 59: 3627-9.
Jensen JS, Fernandes P, Unemo M. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against macrolide-resistant and susceptible Mycoplasma genitalium strains. Antimicrob. Agents Chemother. 2014; 58: 3151-6.
Paukner S, Sader HS, Ivezic-Schoenfeld Z, Jones RN. Antimicrobial activity of the pleuromutilin antibiotic BC-3781 against bacterial pathogens isolated in the SENTRY antimicrobial surveillance program in 2010. Antimicrob. Agents Chemother. 2013; 57: 4489-95.
Falk L, Jensen JS. Successful outcome of macrolide-resistant Mycoplasma genitalium urethritis after spectinomycin treatment: a case report. J. Antimicrob. Chemother. 2017; 72: 624-5.
Center for Disease Dynamics, Economics & Policy. State of the world's antibiotics 2015. 2015. [Cited 17 May 2017.] Available from URL: http://cddep.org/sites/default/files/swa_2015_final.pdf
World Health Organization. Antimicrobial resistance: global report on surveillance 2014. [Cited 11 May 2019.] Available from URL: https://www.who.int/drugresistance/documents/surveillancereport/en/
Luepke KH, Suda KJ, Boucher H et al. Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacother 2017; 37: 71-84.
The Pew Charitable Trusts. Antibiotics currently in clinical development 2019. [Cited 11 Mar 2019.] Available from URL: https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development
The Pew Charitable Trusts. Antibiotics currently in clinical development 2019. [Cited 11 Mar 2019.] Available from URL: https://www.pewtrusts.org/-/media/assets/2019/03/antibiotics-currently-in-global-clinical-development.pdf?la=en&hash=078238EF15FACD9753ED2C4EBAB58F16B664B59E
The White House. National action plan for combating antibioticresistant bacteria. 2015. [Cited 11 Mar 2019.] Available from URL: https://obamawhitehouse.archives.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf
Kostyanev T, Bonten MJ, O'Brien S et al. The innovative medicines initiative's new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle antibiotic resistance. J. Antimicrob. Chemother. 2016; 71: 290-5.
Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018; 18: 318-27.
Guh AY, Bulens SN, Mu Y et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012-2013. JAMA 2015; 314: 1479.
Tamma PD, Goodman KE, Harris AD et al. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae bacteremia. Clin. Infect. Dis. 2017; 64: 257-64.
Logan LK, Bonomo RA. Metallo-β-lactamase (MBL)-producing Enterobacteriaceae in United States children. Open Forum Infect. Dis. 2016; 3: ofw090.
Tsai YK, Fung CP, Lin JC et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2011; 55: 1485-93.
Du D, Wang Z, James NR et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature 2014; 509: 512-5.
Bonkat G, Bartoletti RR, Bruyère F et al. Urological infections. [Cited 15 Mar 2019.] Available from URL: https://uroweb.org/guideline/urological-infections/#3
Livermore DM, Mushtaq S, Warner M et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2011; 55: 390-4.
Lahiri SD, Johnstone MR, Ross PL et al. Avibactam and class C β-lactamases: mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob. Agents Chemother. 2014; 58: 5704-13.
Chew KL, Tay MKL, Cheng B et al. Aztreonam-avibactam combination restores susceptibility of aztreonam in dual-carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2018; 62: e00414-18.
Karlowsky JA, Kazmierczak KM, de Jonge BLM et al. In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob. Agents Chemother. 2017; 61: e00472-17.
ClinicalTrials.gov.Identifier:NCT02655419. [Cited 16 Mar 2019.] Available from URL: https://clinicaltrials.gov/ct2/show/NCT02655419
Ito A, Nishikawa T, Matsumoto S et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016; 60: 7396-401.
Tillotson GS. Trojan horse antibiotics - a novel way to circumvent Gram-negative bacterial resistance? Infect. Dis. 2016; 9: 45-52.
Ito-Horiyama T, Ishii Y, Ito A et al. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob. Agents Chemother. 2016; 60: 4384-6.
Portsmouth S, van Veenhuyzen D, Echols R et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018; 18: 1319-28.
ClinicalTrials.gov.Identifier:NCT 02714595. [Cited 17 Mar 2019.] Available from URL: https://clinicaltrials.gov/ct2/show/NCT02714595
Olsen I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis. 2015; 34: 1303-8.
Zhanel GG, Lawrence CK, Adam H et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018; 78: 65-98.
Lapuebla A, Abdallah M, Olafisoye O et al. Activity of imipenem with relebactam against Gram-negative pathogens from New York City. Antimicrob. Agents Chemother. 2015; 59: 5029-31.
Hirsch EB, Ledesma KR, Chang KT et al. In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria. Antimicrob. Agents Chemother. 2012; 56: 3753-7.
Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013; 68: 2286-90.
Sims M, Mariyanovski V, McLeroth P et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J. Antimicrob. Chemother. 2017; 72: 2616-26.
Lapuebla A, Abdallah M, Olafisoye O et al. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob. Agents Chemother. 2015; 59: 4856-60.
Lomovskaya O, Sun D, Rubio-Aparicio D et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 2017; 61: e01443-17.
Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016; 60: 5454-8.
Sun D, Rubio-Aparicio D, Nelson K et al. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2017; 61: e01694-17.
Kaye KS, Bhowmick T, Metallidis S et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA 2018; 319: 788-99.
Tamma PD, Hsu AJ. Defining the role of novel β-lactam agents that target carbapenem-resistant gram-negative organisms. J. Pediatric Infect. Dis. Soc. 2019; https://doi.org/10.1093/jpids/piz002.

Auteurs

Hiroyuki Kitano (H)

Department of Urology, Hiroshima University, Hiroshima City, Hiroshima, Japan.
Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima City, Hiroshima, Japan.

Jun Teishima (J)

Department of Urology, Hiroshima University, Hiroshima City, Hiroshima, Japan.

Katsumi Shigemura (K)

Department of Urology, Kobe University, Kobe City, Hyogo, Japan.

Hiroki Ohge (H)

Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima City, Hiroshima, Japan.

Masato Fujisawa (M)

Department of Urology, Kobe University, Kobe City, Hyogo, Japan.

Akio Matsubara (A)

Department of Urology, Hiroshima University, Hiroshima City, Hiroshima, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH