Ocular tissue changes associated with anterior segment opacity in lumpfish (Cyclopterus lumpus L) eye.
Cyclopterus lumpus L
cataract
histology
imaging
ocular pathology
Journal
Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188
Informations de publication
Date de publication:
Oct 2019
Oct 2019
Historique:
received:
27
05
2019
revised:
05
07
2019
accepted:
09
07
2019
pubmed:
9
8
2019
medline:
24
12
2019
entrez:
9
8
2019
Statut:
ppublish
Résumé
Lumpfish use their vision to hunt prey or, in the case of aquaculture, to see and eat pelleted diets. A common anterior ocular opacity abnormality designated in the literature as "cataract" described in both farmed and wild lumpfish has not yet been characterized in detail at the pathobiological level. We describe here lens tissue changes associated with cataract in cultured and domesticated lumpfish. Methodology included gross observations, ophthalmoscopy and histology. Young adult cultured animals approaching 400 days post-hatch presented a range of anterior segment opacities associated with lenticular abnormalities observable at a histological level. Wild aged domesticated animals also displayed cataracts characterized mainly by abnormalities of the lens observed by both ophthalmoscopy and histology. Dysplastic lesions of the lens in one aged domesticated lumpfish were accompanied with both retinal and optic nerve degeneration. These novel naturally occurring anatomical changes in lumpfish present both commonalities and unique features associated with cataract in young adult cultured animals versus aged domesticated broodstock animals.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1401-1408Subventions
Organisme : Vitamin Research Fund
Organisme : Ocean Frontier Institute and from the Faculty of Medicine
Organisme : Memorial University; through leverage funds from School of Graduate Studies
Organisme : Faculty of Medicine, Memorial University and through support from the Joe Brown Aquatic Research Building (JBARB)
Informations de copyright
© 2019 John Wiley & Sons Ltd.
Références
Ahmad, R., Paradis, H., Boyce, D., McDonald, J., & Gendron, R. L. (2019). Novel characteristics of the cultured lumpfish Cyclopterus lumpus eye during post-hatch larval and juvenile developmental stages. Journal of Fish Biology, 94, 297-312. https://doi.org/10.1111/jfb.13892.
Allen, D. M., Pipes, C., Deramus, K., & Hallows, T. E. (1999). A comparison of light-induced rod degeneration in two teleost models. In J. G. Hollyfield, R. E. Anderson & M. M. LaVail (Eds.), Retinal degenerative diseases and experimental therapy (pp. 337-350). New York, NY: Springer-Verlag.
Allison, W. T., Hallows, T. E., Johnson, T., Hawryshyn, C. W., & Allen, D. M. (2006). Photic history modifies susceptibility to retinal damage in albino trout. Visual Neuroscience, 23, 25-34. https://doi.org/10.1017/S0952523806231031
Bejarano-Escobar, R., Blasco, M., Martín-Partido, G., & Francisco-Morcillo, J. (2012). Light-induced degeneration and microglial response in the retina of an epibenthonic pigmented teleost: Age-dependent photoreceptor susceptibility to cell death. Journal of Experimental Biology, 215(Pt 21), 3799-3812. https://doi.org/10.1242/jeb.072124
Bjerkås, E., Breck, O., & Waagbø, R. T. (2006). The role of nutrition in cataract formation in farmed fish. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(033), 1-16. https://doi.org/10.1079/PAVSNNR20061033
Bjerkås, E., Holst, J. C., Bjerkås, I., & Ringvold, A. (2003). Osmotic cataract causes reduced vision in wild Atlantic salmon postsmolts. Diseases of Aquatic Organisms, 55(2), 151-159.
Chhetri, J., Jacobson, G., & Gueven, N. (2014). Zebrafish-on the move towards ophthalmological research. Eye (Lond), 28(4), 367-380. https://doi.org/10.1038/eye.2014.19
Gendron, R. L., Laver, N. V., Good, W. V., Grossniklaus, H. E., Miskiewicz, E., Whelan, M. A., … Paradis, H. (2010). Loss of tubedown expression as a contributing factor in the development of age-related retinopathy. Investigative Ophthalmology & Visual Science, 51(10), 5267-5277. https://doi.org/10.1167/iovs.09-4527
Gestri, G., Link, B. A., & Neuhauss, S. C. (2012). The visual system of zebrafish and its use to model human ocular diseases. Developmental Neurobiology, 72(3), 302-327. https://doi.org/10.1002/dneu.20919
Greenlees, R., Mihelec, M., Yousoof, S., Speidel, D., Wu, S. K., Rinkwitz, S., … Jamieson, R. V. (2015). Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization. Human Molecular Genetic, 24(20), 5789-5804. https://doi.org/10.1093/hmg/ddv298
Imsland, A. K., Reynolds, P., Eliassen, G., Arne Hangstad, T., Foss, A., Vikingstad, E., & Anders Elvegård, T. (2014). The use of Lumpfish (Cyclopterus lumpus L.) to control sea lice (Lepeophtheirus salmonis Krøyer) infestations in intensively farmed Atlantic salmon (Salmo salar L.). Aquaculture, 424-425, 18-23.
Imsland, A. K., Reynolds, P., Jonassen, T., Arne Hangstad, T., Adron, J., Anders Elvegård, T., … Mikalsen, B. (2019). Comparison of diet composition, feeding, growth and health of lumpfish (Cyclopterus lumpus L.) fed either feed blocks or pelleted commercial feed. Aquaculture Research, 50, 1952-1963. https://doi.org/10.1111/are.14083
Imsland, A. K., Reynolds, P., Jonassen, T. M., Hangstad, T. A., Elvegård, T. A., Urskog, T. C., & Mikalsen, B. (2018). Effects of three commercially available diets on growth, cataract development and health of lump- fish (Cyclopterus lumpus L.). Aquaculture Research, 49, 3131-3141. https://doi.org/10.1111/are.13776
Jager, R. D., Mieler, W. F., & Miller, J. W. (2008). Age-related macular degeneration. New England Journal of Medicine, 358(24), 2606-2617. https://doi.org/10.1056/NEJMra0801537
Jonassen, T., Hamadi, M., Remø, S. C., & Waagbø, R. (2017). An epidemiological study of cataracts in wild and farmed lumpfish (Cyclopterus lumpus L.) and the relation to nutrition. Journal of Fish Diseases, 40(12), 1903-1914.
Krall, M., Htun, S., Anand, D., Hart, D., Lachke, S. A., & Slavotinek, A. M. (2018). A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Human Genetics, 137(4), 315-328. https://doi.org/10.1007/s00439-018-1884-1
Lorance, P., Cook, R., Herrera, J., de Sola, L., Florin, A., & Papaconstantinou, C. (2015). [27 2018]. Cyclopterus lumpus. The IUCN Red List of Threatened Species 2015 e. T18237406A45078284.
Marsili, S., Salganik, R. I., Albright, C. D., Freel, C. D., Johnsen, S., Peiffer, R. L., & Costello, M. J. (2004). Cataract formation in a strain of rats selected for high oxidative stress. Experimental Eye Research, 79(5), 595-612.
Posner, M., McDonald, M. S., Murray, K. L., & Kiss, A. J. (2019). Why does the zebrafish cloche mutant develop lens cataract? PLoS ONE, 14(3), e0211399. https://doi.org/10.1371/journal.pone.0211399
Powell, A., Treasurer, J. W., Pooley, C. L., Keay, A. J., Lloyd, R., Imsland, A. K., & Garcia de Leaniz, C. (2018). Use of lumpfish for sea-lice control in salmon farming: Challenges and opportunities. Reviews in Aquaculture, 10, 683-702. https://doi.org/10.1111/raq.12194
Prior, H. M., Letwin, K., Tuininga, A., & Nguyen, M. (2018). A simple method of cataract induction in adult zebrafish. Zebrafish, 15(2), 211-212. https://doi.org/10.1089/zeb.2017.1533
Remø, S. C., Hevrøy, E. M., Breck, O., Olsvik, P. A., & Waagbø, R. (2017). Lens metabolomic profiling as a tool to understand cataractogenesis in Atlantic salmon and rainbow trout reared at optimum and high temperature. PLoS ONE, 12(4), e0175491. https://doi.org/10.1371/journal.pone.0175491
Remø, S. C., Olsvik, P. A., Torstensen, B. E., Amlund, H., Breck, O., & Waagbø, R. (2011). Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Experimental Eye Research, 92(5), 414-424. https://doi.org/10.1016/j.exer.2011.02.018.
Rhodes, J. D., Breck, O., Waagbø, R., Bjerkås, E., & Sanderson, J. (2010). N-Acetyl- histidine, a novel osmolyte in the lens of Atlantic Salmon (Salmo salar L.). American Journal of Physiology-regulatory, Integrative and Comparative Physiology, 299, R1075-R1081. https://doi.org/10.1152/ajpregu.00214.2010
Sambraus, F., Fjelldal, P. G., Remø, S. C., Hevrøy, E. M., Nilsen, T. O., Thorsen, A., … Waagbø, R. (2017). Water temperature and dietary histidine affect cataract formation in Atlantic salmon (Salmo salar L.) diploid and triploid yearling smolt. Journal of Fish Diseases, 40(9), 1195-1212.
Scott, W. B., & Scott, M. G. (1988). Atlantic fishes of Canada. Canadian Bulletin of Fish and Aquatic. Science, 219, 518-519.
Soules, K. A., & Link, B. A. (2005). Morphogenesis of the anterior segment in the zebrafish eye. BMC Developmenatal Biolology, 5, 12.
Tschopp, M., Takamiya, M., Cerveny, K. L., Gestri, G., Biehlmaier, O., Wilson, S. W., … Neuhauss, S. C. (2010). Funduscopy in adult zebrafish and its application to isolate mutant strains with ocular defects. PLoS ONE, 5(11), e15427. https://doi.org/10.1371/journal.pone.0015427
Waagbø, R., Trösse, C., Koppe, W., Fontanillas, R., & Breck, O. (2010). Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater. British Journal of Nutrition, 104(10), 1460-1470. https://doi.org/10.1017/S0007114510002485
Wu, S. Y., Zou, P., Mishra, S., & Mchaourab, H. S. (2018). Transgenic zebrafish models reveal distinct molecular mechanisms for cataract-linked αA-crystallin mutants. PLoS ONE, 13(11), e0207540. https://doi.org/10.1371/journal.pone.0207540