A novel methodology to study nanoporous alumina by small-angle neutron scattering.
nanochannels
nanoporous alumina
small-angle neutron scattering
structural characterization
Journal
Journal of applied crystallography
ISSN: 0021-8898
Titre abrégé: J Appl Crystallogr
Pays: United States
ID NLM: 9876190
Informations de publication
Date de publication:
01 Aug 2019
01 Aug 2019
Historique:
received:
12
04
2019
accepted:
20
05
2019
entrez:
10
8
2019
pubmed:
10
8
2019
medline:
10
8
2019
Statut:
epublish
Résumé
Nanoporous anodic aluminium oxide (AAO) membranes are promising host systems for confinement of condensed matter. Characterizing their structure and composition is thus of primary importance for studying the behavior of confined objects. Here a novel methodology to extract quantitative information on the structure and composition of well defined AAO membranes by combining small-angle neutron scattering (SANS) measurements and scanning electron microscopy (SEM) imaging is reported. In particular, (i) information about the pore hexagonal arrangement is extracted from SEM analysis, (ii) the best SANS experimental conditions to perform reliable measurements are determined and (iii) a detailed fitting method is proposed, in which the probed length in the fitting model is a critical parameter related to the longitudinal pore ordering. Finally, to validate this strategy, it is applied to characterize AAOs prepared under different conditions and it is shown that the experimental SANS data can be fully reproduced by a core/shell model, indicating the existence of a contaminated shell. This original approach, based on a detailed and complete description of the SANS data, can be applied to a variety of confining media and will allow the further investigation of condensed matter under confinement.
Identifiants
pubmed: 31396027
doi: 10.1107/S160057671900726X
pii: vg5113
pmc: PMC6662990
doi:
Types de publication
Journal Article
Langues
eng
Pagination
745-754Références
J Phys Chem B. 2005 Feb 3;109(4):1347-60
pubmed: 16851102
Langmuir. 2007 Jan 30;23(3):1564-8
pubmed: 17241088
Science. 1995 Jun 9;268(5216):1466-8
pubmed: 17843666
Nat Mater. 2007 Dec;6(12):961-5
pubmed: 17934464
Eur Phys J E Soft Matter. 2011 Jul;34(7):71
pubmed: 21779985
Nanotechnology. 2012 Aug 17;23(32):325606
pubmed: 22828486
Phys Rev Lett. 2013 Mar 8;110(10):108303
pubmed: 23521308
ACS Appl Mater Interfaces. 2013 Apr 24;5(8):3441-8
pubmed: 23521656
Chem Rev. 2014 Aug 13;114(15):7487-556
pubmed: 24926524
J Phys Condens Matter. 2015 Mar 18;27(10):103102
pubmed: 25679044
Small. 2016 Jun;12(21):2810-31
pubmed: 27040151
Nanoscale. 2019 Jan 31;11(5):2148-2152
pubmed: 30667446
Phys Rev A. 1990 Nov 15;42(10):5978-5989
pubmed: 9903877