Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections.
asynchronous activity
distributed simulation
large-scale simulation
long range interconnections
slow wave activity
spiking neural network
strong scaling
weak scaling
Journal
Frontiers in systems neuroscience
ISSN: 1662-5137
Titre abrégé: Front Syst Neurosci
Pays: Switzerland
ID NLM: 101477946
Informations de publication
Date de publication:
2019
2019
Historique:
received:
20
03
2019
accepted:
08
07
2019
entrez:
10
8
2019
pubmed:
10
8
2019
medline:
10
8
2019
Statut:
epublish
Résumé
Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192 × 192 modules, each composed of 1,250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40 GHz clock rate. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1,024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3 × 10
Identifiants
pubmed: 31396058
doi: 10.3389/fnsys.2019.00033
pmc: PMC6664086
doi:
Types de publication
Journal Article
Langues
eng
Pagination
33Références
Brain Struct Funct. 2016 Dec;221(9):4429-4449
pubmed: 26754838
Cogn Neurodyn. 2012 Jun;6(3):239-50
pubmed: 23730355
Neuron. 2013 Mar 20;77(6):1136-50
pubmed: 23522048
Sci Rep. 2017 Jan 03;7:39611
pubmed: 28045036
J Neurosci. 2015 Jul 29;35(30):10866-77
pubmed: 26224868
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8
pubmed: 18292226
Cereb Cortex. 2019 Jan 1;29(1):319-335
pubmed: 29190336
IEEE Trans Neural Netw. 1993;4(3):523-8
pubmed: 18267754
Sci Rep. 2019 Jun 20;9(1):8990
pubmed: 31222151
Neural Comput. 1999 Oct 1;11(7):1621-71
pubmed: 10490941
Nat Neurosci. 2000 Oct;3(10):1027-34
pubmed: 11017176
Science. 2014 Aug 8;345(6197):668-73
pubmed: 25104385
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 1):051917
pubmed: 12513533
Cereb Cortex. 2014 Mar;24(3):785-806
pubmed: 23203991
Neural Comput. 2000 Oct;12(10):2305-29
pubmed: 11032036
Neuron. 2009 May 14;62(3):413-25
pubmed: 19447096
Front Neuroinform. 2018 Feb 16;12:2
pubmed: 29503613
Neuron. 2008 Oct 23;60(2):321-7
pubmed: 18957223
Front Neuroinform. 2014 Feb 04;8:6
pubmed: 24550820
J Neurosci. 2012 Apr 18;32(16):5454-71
pubmed: 22514308
Biol Cybern. 2005 Aug;93(2):91-108
pubmed: 16059785
J Neurosci. 2002 Oct 1;22(19):8691-704
pubmed: 12351744
J Neurosci. 2009 Aug 26;29(34):10600-12
pubmed: 19710313
Front Syst Neurosci. 2019 Jul 23;13:33
pubmed: 31396058
J Neurophysiol. 2005 Mar;93(3):1671-98
pubmed: 15537811
Front Syst Neurosci. 2019 Nov 22;13:70
pubmed: 31824271
Arch Ital Biol. 2014 Jun-Sep;152(2-3):147-55
pubmed: 25828686
Nat Rev Neurosci. 2002 Sep;3(9):679-93
pubmed: 12209117
Elife. 2016 Nov 16;5:
pubmed: 27849520
Phys Rev Lett. 2007 Apr 6;98(14):148101
pubmed: 17501315
Neural Netw. 2009 Jul-Aug;22(5-6):791-800
pubmed: 19615853
J Neurophysiol. 2011 Dec;106(6):2910-21
pubmed: 21880935
Neural Comput. 2005 Aug;17(8):1776-801
pubmed: 15969917
Front Neurosci. 2009 Sep 15;3(2):192-7
pubmed: 20011141
Methods Protoc. 2020 Jan 31;3(1):
pubmed: 32023996
Neural Comput. 1997 Aug 15;9(6):1179-209
pubmed: 9248061