Metagenomic profiles of the rumen microbiota during the transition period in low-yield and high-yield dairy cows.
dairy cows
metagenomic profiles
milk yield
rumen microbiota
transition period
Journal
Animal science journal = Nihon chikusan Gakkaiho
ISSN: 1740-0929
Titre abrégé: Anim Sci J
Pays: Australia
ID NLM: 100956805
Informations de publication
Date de publication:
Oct 2019
Oct 2019
Historique:
received:
24
03
2019
revised:
17
05
2019
accepted:
18
06
2019
pubmed:
14
8
2019
medline:
11
2
2020
entrez:
14
8
2019
Statut:
ppublish
Résumé
We investigated potential relationships between rumen microbiota and milk production in dairy cows during the transition period. Twelve dairy cows were divided into a low-yield (LY) or high-yield (HY) group based on their milk yield. Rumen samples were taken from dairy cows at 3 weeks before parturition, and at 4, 8, and 12 weeks after parturition. 16S rDNA-based metagenomic analysis showed that diversities of rumen microbiota in both groups were similar and the number of operational taxonomic units (OTUs) was lower in the postpartum than prepartum period in both groups. The abundance of Bacteroidetes and ratio of Bacteroidetes:Firmicutes was higher in the HY than the LY group. OTUs assigned to Prevotella bryantii, Fibrobacter succinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, and Succinivibrio sp. were abundant in the HY group. These OTUs were significantly related to the propionate molar proportion of rumen fluids in the HY group. OTUs assigned to Lachnospiraceae, Bifidobacterium sp. and Saccharofermentans were dominant in the LY group. Predictive functional profiling revealed that abundance of gene families involved in amino acid and vitamin metabolism was higher in the HY than the LY group. These results suggest that the community structure and fermentation products of rumen microbiota could be associated with milk production of dairy cows.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1362-1376Subventions
Organisme : Ministry of Agriculture, Forestry and Fisheries (MAFF)
Organisme : University of Tsukuba
Organisme : National Agriculture and Food Research Organization (NARO)
Organisme : RISET-Pro Scholarship Program of the Indonesian Ministry of Research, Technology and Higher Education (Kemenristekdikti)
Informations de copyright
© 2019 Japanese Society of Animal Science.
Références
Bionaz, M., & Loor, J. J. (2012). Ruminant metabolic systems biology: Reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state. Gene Regulation and System Biology, 6, 109-125. https://doi.org/10.4137/GRSB.S9852
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. https://doi.org/10.1038/nmeth.f.303
Chiquette, J., Allison, M. J., & Rasmussen, M. A. (2012). Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. Journal of Dairy Science, 91, 3536-3543. https://doi.org/10.3168/jds.2007-0849
Cremonesi, P., Conte, G., Severgnini, M., Turri, F., Monni, A., Capra, E., … Castiglioni, B. (2018). Evaluation of the effects of different diets on microbiome diversity and fatty acid composition of rumen liquor in dairy goat. Animal, 12, 1856-1866. https://doi.org/10.1017/S1751731117003433
DeFrain, J. M., Hippen, A. R., Kalscheur, K. F., & Schingoethe, D. J. (2004). Feeding lactose increases ruminal butyrate and plasma β-hydroxybutyrate in lactating dairy cows. Journal of Dairy Science, 87, 2486-2494. https://doi.org/10.3168/jds.S0022-0302(04)73373-1
Derakhshani, H., Tun, H. M., Cardoso, F. C., Plaizier, J. C., Khafipour, E., & Loor, J. J. (2017). Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters. Frontiers in Microbiology, 7, 2143. https://doi.org/10.3389/fmicb.2016.02143
deVries, W., & Stouthamer, A. H. (1968). Fermentation of glucose, lactose, galactose, mannitol, and xylose by Bifidobacteria. Journal of Bacteriology, 96, 472-478. Retrieved from https://jb.asm.org/content/96/2/472.long
Drackley, J. K., & Cardoso, F. C. (2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR systems. Animal, 8, 5-14. https://doi.org/10.1017/S1751731114000731
Fernando, S. C., Purvis, H. T., Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., … DeSilva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 76, 7482-7490. https://doi.org/10.1128/AEM.00388-10
Goad, D. W., Goad, C. L., & Nagaraja, T. G. (1998). Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. Journal of Animal Science, 76, 234-241. https://doi.org/10.2527/1998.761234x
Guan, L. L., Nkrumah, J. D., Basarab, J. A., & Moore, S. S. (2008). Linkage of microbial ecology to phenotype: Correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiology Letters, 288, 85-91. https://doi.org/10.1111/j.1574-6968.2008.01343.x
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Abecia, L., … Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5, 14567. https://doi.org/10.1038/srep14567
Hernandez-Sanabria, E., Goonewardene, L. A., Wang, Z., Durunna, O. N., Moore, S. S., & Guan, L. L. (2012). Impact of feed efficiency and diet on adaptive variations in the bacterial community in the rumen fluid of cattle. Applied and Environmental Microbiology, 78, 1203-1214. https://doi.org/10.1128/AEM.05114-11
Jami, E., White, B. A., & Mizrahi, I. (2014). Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS ONE, 9, e85423. https://doi.org/10.1371/journal.pone.0085423
Kim, M., Morrison, M., & Yu, Z. (2011). Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology, 76, 49-63. https://doi.org/10.1111/j.1574-6941.2010.01029.x
Klieve, A. V., Hennessy, D., Ouwerkerk, D., Forster, R. J., Mackie, R. I., & Attwood, G. T. (2003). Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high-grain diets. Journal of Applied Microbiology, 95, 621-630. https://doi.org/10.1046/j.1365-2672.2003.02024.x
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41, gks808. https://doi.org/10.1093/nar/gks808
Kopečný, J., Zorec, M., Mrazek, J., Kobayashi, Y., & Marinšek-Logar, R. (2003). Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. International Journal of Systematic and Evolutionary Microbiology, 53, 201-209. https://doi.org/10.1099/ijs.0.02345-0
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 863-869. https://doi.org/10.1093/molbev/msw054
Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814-821. https://doi.org/10.1038/nbt.2676
Lima, F. S., Oikonomou, G., Lima, S. F., Bicalho, M. L. S., Ganda, E. K., deOliveira Filho, J. C., … Bicalho, R. C. (2015). Characterization of prepartum and postpartum rumen fluid microbiomes and its correlation with production traits in dairy cows. Applied and Environmental Microbiology, 81, 1327-1337. https://doi.org/10.1128/AEM.03138-14
Mao, S., Zhang, M., Liu, J., & Zhu, W. (2015). Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Science Reports, 5, 16116. https://doi.org/10.1038/srep16116
McCann, J. C., Luan, S., Cardoso, F. C., Derakhshani, H., Khafipour, E., & Loor, J. J. (2016). Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Frontiers in Microbiology, 7, 701. https://doi.org/10.3389/fmicb.2016.00701
McDowell, L. R. (2000). Vitamins in animal and human nutrition (pp. 385-417). Ames, IA: Iowa State University Press.
Miettinen, H., & Huhtanen, P. (1996). Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. Journal of Dairy Science, 79, 851-861. https://doi.org/10.3168/jds.S0022-0302(96)76434-2
Minuti, A., Palladino, A., Khan, M. J., Alqarni, S., Agrawal, A., Piccioli-Capelli, F., … Loor, J. J. (2015). Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. Journal of Dairy Science, 98, 8940-8951. https://doi.org/10.3168/jds.2015-9722
Penner, G. B., Steele, M. A., Aschenbach, J. R., & McBride, B. W. (2011). Ruminant nutrition symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. Journal of Animal Science, 89, 1108-1119. https://doi.org/10.2527/jas.2010-3378
Pitta, D. W., Kumar, S., Vecchiarelli, B., Shirley, D. J., Bittinger, K., Baker, L. D., … Thomsen, N. (2014). Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. Journal of Animal Science, 92, 4014-4022. https://doi.org/10.2527/jas.2014-7621
Prabhu, R., Altman, E., & Eiteman, M. A. (2012). Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Applied and Environmental Microbiology, 78, 8564-8570. https://doi.org/10.1128/AEM.02443-12
R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
Russell, J. B., & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 79, 1503-1509. https://doi.org/10.3168/jds.S0022-0302(96)76510-4
Shabat, S. K. B., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S., Berg Miller, M. E., … Mizrahi, I. (2016). Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME Journal, 62, 1-15. https://doi.org/10.1038/ismej.2016.62
Sofyan, A., Mitsumori, M., Ohmori, H., Uyeno, Y., Hasunuma, T., Akiyama, K., … Kushibiki, S. (2017). Differences in rumen fermentation characteristics between low-yield and high-yield dairy cows in early lactation. Animal Science Journal, 88, 974-982. https://doi.org/10.1111/asj.12745
Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). New York, NY: McGraw-Hill Book Co.
Sun, I. L., Sun, E. E., Crane, F. L., Morre, D. J., Lindgren, A., & Löw, H. (1992). Requirement for coenzyme Q in plasma membrane electron transport. Proceeding of the National Academy Sciences of the United States of America, 89, 11126-11130. https://doi.org/10.1073/pnas.89.23.11126
Tang, S., & Edwards, E. A. (2013). Complete genome sequence of Bacteroidales strain CF from a chloroform-dechlorinating enrichment culture. Genome Announcement, 1, e01066-e1113. https://doi.org/10.1128/genomeA.01066-13
Wang, X., Li, X., Zhao, C., Hu, P., Chen, H., Liu, Z., … Wang, Z. (2012). Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Applied and Environmental Microbiology, 78, 2386-2392. https://doi.org/10.1128/AEM.07545-11
Weber, C., Hametner, C., Tuchscherer, A., Losand, B., Kanitz, E., Otten, W., … Hammon, H. M. (2013). Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. Journal of Dairy Science, 96, 165-180. https://doi.org/10.3168/jds.2012-5574