Fiber and phenolic compounds contribution to the hepatoprotective effects of mango diets in rats fed high cholesterol/sodium cholate.
Animals
Antioxidants
/ pharmacology
Cholesterol, Dietary
/ administration & dosage
Cytoprotection
/ drug effects
Diet
/ adverse effects
Dietary Fiber
/ pharmacology
Dietary Supplements
Dose-Response Relationship, Drug
Hypercholesterolemia
/ chemically induced
Lipid Metabolism
/ drug effects
Liver
/ drug effects
Male
Mangifera
/ chemistry
Non-alcoholic Fatty Liver Disease
/ chemically induced
PPAR alpha
/ metabolism
Phenols
/ isolation & purification
Rats
Rats, Wistar
Sodium Cholate
/ administration & dosage
PPARα
cytokines
gene expression regulation
mango
nonalcoholic fatty liver disease
polyphenols
Journal
Phytotherapy research : PTR
ISSN: 1099-1573
Titre abrégé: Phytother Res
Pays: England
ID NLM: 8904486
Informations de publication
Date de publication:
Nov 2019
Nov 2019
Historique:
received:
29
01
2019
revised:
19
07
2019
accepted:
28
07
2019
pubmed:
17
8
2019
medline:
16
1
2020
entrez:
17
8
2019
Statut:
ppublish
Résumé
The present study evaluated the contribution of mango fiber (MF) and mango phenolic compounds (MP) to the hepatoprotective effect of freeze-dried mango pulp (FDM) cultivar (cv.) "Ataulfo" diets in high cholesterol/sodium cholate (HCC)-fed rats. Male Wistar rats were fed with a HCC diet for 12 weeks, either untreated, or supplemented with MF, MP, FDM, or a control diet (no HCC; n = 6/group). All mango treatments significantly decreased hepatic cholesterol deposition and altered its fatty acid profile, whereas MF and MP mitigated adipose tissue hypertrophy. MF caused a lower level of proinflammatory cytokines (IL-1α/β, IFN-γ, TNF-α) whereas FDM increased the anti-inflammatory ones (IL-4, 6, 10). Mango treatments increased catalase (CAT) activity and its mRNA expression; superoxide dismutase (SOD) activity was normalized by MF and FDM, but its activity was unrelated to its hepatic mRNA expression. Changes in CAT and SOD mRNA expression were unrelated to altered Nrf2 mRNA expression. Higher hepatic PPARα and LXRα mRNA levels were found in MP and MF. We concluded that MF and MP are highly bioactive, according to the documented hepatoprotection in HCC-fed rats; their mechanism of action appears to be related to modulating cholesterol and fatty acid metabolism as well as to stimulating the endogenous antioxidant system.
Substances chimiques
Antioxidants
0
Cholesterol, Dietary
0
Dietary Fiber
0
PPAR alpha
0
Phenols
0
Sodium Cholate
NU3Y4CCH8Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2996-3007Subventions
Organisme : Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos
ID : 563
Organisme : Comprehensive Institutional Strengthening Program (PIFI) 2007-2008
ID : 2909 5001-004-09
Informations de copyright
© 2019 John Wiley & Sons, Ltd.
Références
Aebi, H. (1984). [13] Catalase in vitro. In Methods in Enzymology (Vol. 105) (pp. 121-126). New York: Academic Press.
Aguilar, D., & Fernandez, M. L. (2014). Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity. Advances in Nutrition, 5(5), 497-502. https://doi.org/10.3945/an.114.005934
Angulo, P. (2002). Medical progress-Nonalcoholic fatty liver disease. New England Journal of Medicine, 346(16), 1221-1231. https://doi.org/10.1056/NEJMra011775
Arguello, G., Balboa, E., Arrese, M., & Zanlungo, S. (2015). Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1852(9), 1765-1778. https://doi.org/10.1016/j.bbadis.2015.05.015
Beltrán-Debón, R., Rull, A., Rodríguez-Sanabria, F., Iswaldi, I., Herranz-López, M., Aragonès, G., … Joven, J. (2011). Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine, 18(5), 414-424. https://doi.org/10.1016/j.phymed.2010.11.008
Beynen, A. C., Lemmens, A. G., Debruijne, J. J., Katan, M. B., & Vanzutphen, L. F. M. (1986). Interaction of dietary-cholesterol with cholate in rats: Effect on serum-cholesterol, liver cholesterol and liver-function. Nutrition Reports International, 34(4), 557-563.
Bo, T., Shao, S., Wu, D., Niu, S., Zhao, J., & Gao, L. (2017). Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics. MicrobiologyOpen, 6(4), e00491. https://doi.org/10.1002/mbo3.491
Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A., & Bacon, B. R. (1999). Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. American Journal of Gastroenterology, 94(9), 2467-2474. https://doi.org/10.1016/S0002-9270(99)00433-5
Caligiuri, A., Gentilini, A., & Marra, F. (2016). Molecular Pathogenesis of NASH. International Journal of Molecular Sciences, 17(9). https://doi.org/10.3390/ijms17091575
Castoldi, A., Naffah de Souza, C., Câmara, N. O. S., & Moraes-Vieira, P. M. (2016). The macrophage switch in obesity development. Frontiers in Immunology, 6(637). https://doi.org/10.3389/fimmu.2015.00637
Chao, J., Huo, T.-I., Cheng, H.-Y., Tsai, J.-C., Liao, J.-W., Lee, M.-S., … Peng, W.-H. (2014). Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS ONE, 9(6), e96969. https://doi.org/10.1371/journal.pone.0096969
Charytoniuk, T., Drygalski, K., Konstantynowicz-Nowicka, K., & Chabowski, A. (2017). Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition, 34, 108-117. https://doi.org/10.1016/j.nut.2016.09.001
Chung, S., & Parks, J. S. (2016). Dietary cholesterol effects on adipose tissue inflammation. Current Opinion in Lipidology, 27(1), 19-25. https://doi.org/10.1097/Mol.0000000000000260
Domínguez-Avila, J. A., Alvarez-Parrilla, E., López-Díaz, J. A., Maldonado-Mendoza, I. E., Gómez-García, M. d. C., & de la Rosa, L. A. (2015). The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets. Food Chemistry, 168, 529-537. https://doi.org/10.1016/j.foodchem.2014.07.092
Domínguez-Avila, J. A., Wall-Medrano, A., de la Rosa, L. A., Alvarez-Parrilla, E., Astiazaran-Garcia, H., & González-Aguilar, G. A. (2019). Mango phenolics increase serum apolipoprotein a1/b ratio in rats fed high cholesterol and sodium cholate diets. Journal of the Science of Food and Agriculture, 99(4), 1604-1612. https://doi.org/10.1002/jsfa.9340
Eisinger, K., Krautbauer, S., Hebel, T., Schmitz, G., Aslanidis, C., Liebisch, G., & Buechler, C. (2014). Lipidomic analysis of the liver from high-fat diet induced obese mice identifies changes in multiple lipid classes. Experimental and Molecular Pathology, 97(1), 37-43. https://doi.org/10.1016/j.yexmp.2014.05.002
Enright, E. F., Joyce, S. A., Gahan, C. G. M., & Griffin, B. T. (2017). Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. Molecular Pharmaceutics, 14(4), 1251-1263. https://doi.org/10.1021/acs.molpharmaceut.6b01155
Federico, A., Dallio, M., Godos, J., Loguercio, C., & Salomone, F. (2016). Targeting gut-liver axis for the treatment of nonalcoholic steatohepatitis: Translational and clinical evidence. Translational Research, 167(1), 116-124. https://doi.org/10.1016/j.trsl.2015.08.002
Fki, I., Bouaziz, M., Sahnoun, Z., & Sayadi, S. (2005). Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorganic & Medicinal Chemistry, 13(18), 5362-5370. https://doi.org/10.1016/j.bmc.2005.05.036
Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
Guo, W. X., Shu, Y., & Yang, X. P. (2016). Tea dietary fiber improves serum and hepatic lipid profiles in mice fed a high cholesterol diet. Plant Foods for Human Nutrition, 71(2), 145-150. https://doi.org/10.1007/s11130-016-0536-7
Han, S., Jiao, J., Zhang, W., Xu, J., Wan, Z., Zhang, W., … Qin, L. (2015). Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6 J mice fed a high-fat/cholesterol diet. Scientific Reports, 5, 15256. https://doi.org/10.1038/srep15256
Hong, C., & Tontonoz, P. (2014). Liver X receptors in lipid metabolism: Opportunities for drug discovery. Nature Reviews Drug Discovery, 13(6), 433-444. https://doi.org/10.1038/nrd4280
Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms, 2(5-6), 231-237. https://doi.org/10.1242/dmm.001180
Ioannou, G. N. (2016). The role of cholesterol in the pathogenesis of NASH. Trends in Endocrinology and Metabolism, 27(2), 84-95. https://doi.org/10.1016/j.tem.2015.11.008
Jeong, W., Jeong, D. H., Do, S. H., Kim, Y. K., Park, H. Y., Kwon, O. D., … Jeong, K. S. (2005). Mild hepatic fibrosis in cholesterol and sodium cholate diet-fed rats. Journal of Veterinary Medical Science, 67(3), 235-242. https://doi.org/10.1292/jvms.67.235
Jo, S. P., Kim, J. K., & Lim, Y. H. (2014). Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food and Chemical Toxicology, 65, 213-218. https://doi.org/10.1016/j.fct.2013.12.040
Jung, J. H., & Kim, H. S. (2013). The inhibitory effect of black soybean on hepatic cholesterol accumulation in high cholesterol and high fat diet-induced non-alcoholic fatty liver disease. Food and Chemical Toxicology, 60, 404-412. https://doi.org/10.1016/j.fct.2013.07.048
Kirpich, I. A., Parajuli, D., & McClain, C. J. (2015). The gut microbiome in NAFLD and ALD. Clinical Liver Disease, 6(3), 55-58. https://doi.org/10.1002/cld.494
Lassailly, G., Caiazzo, R., Pattou, F., & Mathurin, P. (2016). Perspectives on treatment for nonalcoholic steatohepatitis. Gastroenterology, 150(8), 1835-1848. https://doi.org/10.1053/j.gastro.2016.03.004
Lin, Y.-L., Cheng, C.-Y., Lin, Y.-P., Lau, Y.-W., Juan, I. M., & Lin, J.-K. (1998). Hypolipidemic effect of green tea leaves through induction of antioxidant and Phase II enzymes including superoxide dismutase, catalase, and glutathione S-transferase in rats. Journal of Agricultural and Food Chemistry, 46(5), 1893-1899. https://doi.org/10.1021/jf970963q
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Martinello, F., Soares, S. M., Franco, J. J., Santos, A. C., Sugohara, A., Garcia, S. B., … Uyemura, S. A. (2006). Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food and Chemical Toxicology, 44(6), 810-818. https://doi.org/10.1016/j.fct.2005.10.011
Mendoza-Sánchez, M., Pérez-Ramírez, I. F., Wall-Medrano, A., Martinez-Gonzalez, A. I., Gallegos-Corona, M. A., & Reynoso-Camacho, R. (2019). Chemically induced common bean (Phaseolus vulgaris L.) sprouts ameliorate dyslipidemia by lipid intestinal absorption inhibition. Journal of Functional Foods, 52, 54-62. https://doi.org/10.1016/j.jff.2018.10.032
Musso, G., Gambino, R., & Cassader, M. (2013). Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research, 52(1), 175-191. https://doi.org/10.1016/j.plipres.2012.11.002
Na, H.-K., & Surh, Y.-J. (2008). Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food and Chemical Toxicology, 46(4), 1271-1278. https://doi.org/10.1016/j.fct.2007.10.006
Natal, D. I. G., Rodrigues, K. C. D., Moreira, M. E. D., de Queiroz, J. H., Benjamin, L. D., dos Santos, M. H., … Martino, H. S. D. (2017). Bioactive compounds of the Uba mango juices decrease inflammation and hepatic steatosis in obese Wistar rats. Journal of Functional Foods, 32, 409-418. https://doi.org/10.1016/j.jff.2017.03.023
Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry, 284(20), 13291-13295. https://doi.org/10.1074/jbc.R900010200
Ojo, B., El-Rassi, G., Perkins-Veazie, P., Clarke, S., Smith, B. J., & Lucas, E. A. (2016). Mango supplementation prevents gut microbial dysbiosis and modulates short chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high fat diet. The FASEB Journal, 30(1_supplement), 1166-6. https://doi.org/10.1096/fasebj.30.1_supplement.1166.6
Orena, S., Owen, J., Jin, F., Fabian, M., Gillitt, N. D., & Zeisel, S. H. (2015). Extracts of fruits and vegetables activate the antioxidant response element in IMR-32 cells. The Journal of Nutrition, 145(9), 2006-2011. https://doi.org/10.3945/jn.115.216705
Osman, O. S., Selway, J. L., Kępczyńska, M. A., Stocker, C. J., O'Dowd, J. F., Cawthorne, M. A., … Langlands, K. (2013). A novel automated image analysis method for accurate adipocyte quantification. Adipocytes, 2(3), 160-164. https://doi.org/10.4161/adip.24652
Poudyal, H., Panchal, S. K., Waanders, J., Ward, L., & Brown, L. (2012). Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. Journal of Nutritional Biochemistry, 23(2), 153-162. https://doi.org/10.1016/j.jnutbio.2010.11.011
Puri, P., Wiest, M. M., Cheung, O., Mirshahi, F., Sargeant, C., Min, H. K., … Sanyal, A. J. (2009). The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 50(6), 1827-1838. https://doi.org/10.1002/hep.23229
Quiros-Sauceda, A. E., Chen, C. Y. O., Blumberg, J. B., Astiazaran-Garcia, H., Wall-Medrano, A., & Gonzalez-Aguilar, G. A. (2017). Processing 'ataulfo' mango into juice preserves the bioavailability and antioxidant capacity of its phenolic compounds. Nutrients, 9(10), 1082. https://doi.org/10.3390/nu9101082
Rinella, M. E. (2015). Nonalcoholic fatty liver disease: A systematic review. Journal of the American Medical Association, 313(22), 2263-2273. https://doi.org/10.1001/jama.2015.5370
Robles-Sanchez, M., Astiazaran-Garcia, H., Martin-Belloso, O., Gorinstein, S., Alvarez-Parrilla, E., de la Rosa, L. A., … Gonzalez-Aguilar, G. A. (2011). Influence of whole and fresh-cut mango intake on plasma lipids and antioxidant capacity of healthy adults. Food Research International, 44(5), 1386-1391. https://doi.org/10.1016/j.foodres.2011.01.052
Salazar-López, N. J., Astiazarán-García, H., González-Aguilar, G. A., Loarca-Piña, G., Ezquerra-Brauer, J.-M., Domínguez Avila, J. A., & Robles-Sánchez, M. (2017). Ferulic acid on glucose dysregulation, dyslipidemia, and inflammation in diet-induced obese rats: An integrated study. Nutrients, 9(7), 675. https://doi.org/10.3390/nu9070675
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. https://doi.org/10.1038/nprot.2008.73
Serviddio, G., Bellanti, F., Villani, R., Tamborra, R., Zerbinati, C., Blonda, M., … Iuliano, L. (2016). Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach. Redox Biology, 9, 296-305. https://doi.org/10.1016/j.redox.2016.09.002
Sharma, S., Rana, S., Patial, V., Gupta, M., Bhushan, S., & Padwad, Y. (2016). Antioxidant and hepatoprotective effect of polyphenols from apple pomace extract via apoptosis inhibition and Nrf2 activation in mice. Human & Experimental Toxicology, 35(12), 1264-1275. https://doi.org/10.1177/0960327115627689
Sutti, S., Jindal, A., Locatelli, I., Vacchiano, M., Gigliotti, L., Bozzola, C., & Albano, E. (2014). Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology, 59(3), 886-897. https://doi.org/10.1002/hep.26749
Takahashi, Y., Soejima, Y., & Fukusato, T. (2012). Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology, 18(19), 2300-2308. https://doi.org/10.3748/wjg.v18.i19.2300
Tall, A. R., & Yvan-Charvet, L. (2015). Cholesterol, inflammation and innate immunity. Nature Reviews Immunology, 15(2), 104-116. https://doi.org/10.1038/nri3793
Tirosh, O., Hirsch, N., Konstantinov, A., Anavi, S., Aronis, A., Hagay, Z., & Madar, Z. (2017). OP-17 - Tea extracts-induced liver injury: Lipotoxic interaction between lipids and polyphenols. Free Radical Biology and Medicine, 108(Supplement 1), S8. https://doi.org/10.1016/j.freeradbiomed.2017.04.056
Wall-Medrano, A., De la Rosa, L. A., Vazquez-Flores, A. A., Mercado-Mercado, G., Gonzalez-Arellanes, R., Lopez-Diaz, J. A., … Molina-Corral, F. J. (2017). Lipidomic and antioxidant response to grape seed, corn and coconut oils in healthy wistar rats. Nutrients, 9(1), 82. https://doi.org/10.3390/nu9010082
Wan, C. W., Wong, C. N. Y., Pin, W. K., Wong, M. H. Y., Kwok, C. Y., Chan, R. Y. K., … Chan, S. W. (2013). Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytotherapy Research, 27(4), 545-551. https://doi.org/10.1002/ptr.4751
Wang, H., Zhu, Y.-Y., Wang, L., Teng, T., Zhou, M., Wang, S.-G., … Sun, Y. (2017). Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomedicine & Pharmacotherapy, 96, 328-335. https://doi.org/10.1016/j.biopha.2017.10.022
Wang, Q., Du, Z., Zhang, H., Zhao, L., Sun, J., Zheng, X., & Ren, F. (2015). Modulation of gut microbiota by polyphenols from adlay (Coix lacryma-jobi L. var. ma-yuen Stapf.) in rats fed a high-cholesterol diet. International Journal of Food Sciences and Nutrition, 66(7), 783-789. https://doi.org/10.3109/09637486.2015.1088941
Wang, Y. M., Zhang, B., Xue, Y., Li, Z. J., Wang, J. F., Xue, C. H., & Yanagita, T. (2010). The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids in Health and Disease, 9, 4. https://doi.org/10.1186/1476-511x-9-4
Wang, Y.-X., Li, Y., Sun, A.-M., Wang, F.-J., & Yu, G.-P. (2014). Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet. Nutrients, 6(9), 3696-3710. https://doi.org/10.3390/nu6093696
Xu, Z.-R., Li, J.-Y., Dong, X.-W., Tan, Z.-J., Wu, W.-Z., Xie, Q.-M., & Yang, Y.-M. (2015). Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-κB pathway. Nutrients, 7(8), 5324-7105. https://doi.org/10.3390/nu7085324
Yang, L. G., Song, Z. X., Yin, H., Wang, Y. Y., Shu, G. F., Lu, H. X., … Sun, G. J. (2016). Low n-6/n-3 PUFA ratio improves lipid metabolism, inflammation, oxidative stress and endothelial function in rats using plant oils as n-3 fatty acid source. Lipids, 51(1), 49-59. https://doi.org/10.1007/s11745-015-4091-z
Zhang, M., Xie, Z. K., Gao, W. N., Pu, L. L., Wei, J. Y., & Guo, C. J. (2016). Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutrition Research, 36(3), 271-279. https://doi.org/10.1016/j.nutres.2015.11.019
Zhong, C.-Y., Sun, W.-W., Ma, Y., Zhu, H., Yang, P., Wei, H., … Song, Z.-Y. (2015). Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Scientific Reports, 5, 10512. https://doi.org/10.1038/srep10512