Differential pathlength factor in continuous wave functional near-infrared spectroscopy: reducing hemoglobin's cross talk in high-density recordings.
differential pathlength factor
effective attenuation coefficient
functional near-infrared spectroscopy
hemoglobin cross talk
high-density continuous-wave systems
Journal
Neurophotonics
ISSN: 2329-423X
Titre abrégé: Neurophotonics
Pays: United States
ID NLM: 101632875
Informations de publication
Date de publication:
Jul 2019
Jul 2019
Historique:
received:
02
04
2019
accepted:
18
07
2019
entrez:
20
8
2019
pubmed:
20
8
2019
medline:
20
8
2019
Statut:
ppublish
Résumé
Functional near-infrared spectroscopy (fNIRS) estimates the functional oscillations of oxyhemoglobin and deoxyhemoglobin in the cortex through scalp-located multiwavelength recordings. Hemoglobin oscillations are inferred through temporal changes in continuous-wave (CW) light attenuation. However, because of the diffusive multilayered head tissue structures, the photon path is longer than the source-detector separation, complicating hemoglobin evaluation. This aspect is incorporated in the modified Beer-Lambert law where the source-detector distance is multiplied by the differential pathlength factor (DPF). Since DPF estimation requires photons' time-of-flight information, DPF is assumed
Identifiants
pubmed: 31423455
doi: 10.1117/1.NPh.6.3.035005
pii: 19033R
pmc: PMC6689143
doi:
Types de publication
Journal Article
Langues
eng
Pagination
035005Références
J Opt Soc Am A. 1993 Jan;10(1):127-40
pubmed: 8478741
Neurophotonics. 2017 Oct;4(4):041411
pubmed: 28840162
Appl Opt. 1997 Jan 1;36(1):386-96
pubmed: 18250686
Phys Med Biol. 1992 Jul;37(7):1531-60
pubmed: 1631197
Biomed Opt Express. 2011 Feb 11;2(3):552-67
pubmed: 21412461
Phys Med Biol. 1998 Jun;43(6):1771-82
pubmed: 9651039
Neuroimage. 2014 Jan 15;85 Pt 1:6-27
pubmed: 23684868
Neuroimage. 2014 Jan 15;85 Pt 1:28-50
pubmed: 23747285
J Biomed Opt. 2016 Mar;21(3):36008
pubmed: 26987429
Neurophotonics. 2017 Apr;4(2):021103
pubmed: 28466026
J Biomed Opt. 2015 Oct;20(10):105005
pubmed: 26465613
Adv Exp Med Biol. 2018;1072:331-337
pubmed: 30178367
Neuroimage. 2014 Jan 15;85 Pt 1:181-91
pubmed: 23639260
Biochem Med (Zagreb). 2015 Jun 05;25(2):141-51
pubmed: 26110027
J Biomed Opt. 2013 Oct;18(10):105004
pubmed: 24121731
Sci Rep. 2015 Dec 03;5:17471
pubmed: 26632763
Appl Opt. 2003 Jun 1;42(16):2881-7
pubmed: 12790436
Neuroimage. 2015 May 15;112:128-137
pubmed: 25747916
Phys Med Biol. 1995 Feb;40(2):295-304
pubmed: 7708855
J Neural Eng. 2017 Aug;14(4):046029
pubmed: 28504643
Neurophotonics. 2016 Jul;3(3):031405
pubmed: 27054143
Neuroimage. 2012 Nov 1;63(2):921-35
pubmed: 22510258
Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732
pubmed: 20182646
Adv Funct Mater. 2017 Jan 5;27(1):
pubmed: 28798658
Opt Express. 2002 Feb 11;10(3):159-70
pubmed: 19424345
Adv Exp Med Biol. 2018;1072:325-330
pubmed: 30178366
Phys Med Biol. 2002 Jun 21;47(12):2075-93
pubmed: 12118602
Phys Med Biol. 2001 Jan;46(1):41-62
pubmed: 11197678
Neuroimage. 2016 Dec;143:91-105
pubmed: 27591921
Adv Exp Med Biol. 1993;333:9-20
pubmed: 8362674
Clin Chem. 1991 Sep;37(9):1633-8
pubmed: 1716537
Neuroimage. 2010 Feb 15;49(4):3039-46
pubmed: 19945536