Magnetofection of Green Fluorescent Protein Encoding DNA-Bearing Polyethyleneimine-Coated Superparamagnetic Iron Oxide Nanoparticles to Human Breast Cancer Cells.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
31 Jul 2019
31 Jul 2019
Historique:
received:
08
04
2019
accepted:
04
07
2019
entrez:
29
8
2019
pubmed:
29
8
2019
medline:
29
8
2019
Statut:
epublish
Résumé
Gene therapy is a developing method for the treatment of various diseases. For this purpose, the search for nonviral methods has recently accelerated to avoid toxic effects. A strong alternative method is magnetofection, which involves the use of superparamagnetic iron oxide nanoparticles (SPIONs) with a proper organic coating and external magnetic field to enhance the localization of SPIONs at the target site. In this study, a new magnetic actuation system consisting of four rare-earth magnets on a rotary table was designed and manufactured to obtain improved magnetofection. As a model, green fluorescent protein DNA-bearing polyethyleneimine-coated SPIONs were used. Magnetofection was tested on MCF7 cells. The system reduced the transfection time (down to 1 h) of the standard polyethyleneimine transfection protocol. As a result, we showed that the system could be effectively used for gene transfer.
Identifiants
pubmed: 31460354
doi: 10.1021/acsomega.9b01000
pmc: PMC6682024
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12366-12374Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Curr Gene Ther. 2017;17(1):59-69
pubmed: 28578643
Oncol Lett. 2018 Jul;16(1):687-702
pubmed: 29963134
Artif Cells Nanomed Biotechnol. 2016 Jun;44(4):1186-93
pubmed: 25727710
Nanomaterials (Basel). 2017 Jan 29;7(2):
pubmed: 28336862
Mol Ther. 2013 Jan;21(1):149-57
pubmed: 23032976
Int J Nanomedicine. 2012;7:3445-71
pubmed: 22848170
Zebrafish. 2009 Sep;6(3):245-51
pubmed: 19761378
ACS Nano. 2015 Feb 24;9(2):1236-49
pubmed: 25643235
J Biomed Nanotechnol. 2015 Aug;11(8):1370-84
pubmed: 26295139
Mol Ther. 2005 Jun;11(6):990-5
pubmed: 15922971
Adv Healthc Mater. 2015 Jan 28;4(2):223-7
pubmed: 25125073
Front Immunol. 2018 Apr 26;9:866
pubmed: 29755464
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):8870-4
pubmed: 27035392
Nanoscale Res Lett. 2019 Mar 12;14(1):90
pubmed: 30874913
Lancet. 2014 Mar 29;383(9923):1138-46
pubmed: 24412048
J Gene Med. 2004 Aug;6(8):923-36
pubmed: 15293351
J Mater Chem B. 2014 Dec 7;2(45):7936-7944
pubmed: 32262083
Gene Ther. 2016 Dec;23(12):857-862
pubmed: 27653967
Gene Ther. 2015 Jan;22(1):20-8
pubmed: 25354681
Int J Nanomedicine. 2012;7:359-68
pubmed: 22848158
J Liposome Res. 2003 Feb;13(1):29-32
pubmed: 12725725
Biomater Sci. 2016 Jan;4(1):70-86
pubmed: 26484365
Ann Biomed Eng. 2015 Nov;43(11):2816-26
pubmed: 25963582
Nat Rev Genet. 2014 Aug;15(8):541-55
pubmed: 25022906
Biomed Res Int. 2015;2015:959175
pubmed: 26078971
Nanomedicine (Lond). 2016 Mar;11(6):627-41
pubmed: 27021639
J Clin Diagn Res. 2015 Jan;9(1):GE01-6
pubmed: 25738007
Magn Reson Imaging. 2011 Feb;29(2):272-80
pubmed: 21145190
Gene Ther. 2002 Jan;9(2):102-9
pubmed: 11857068
Hum Gene Ther. 2014 Jan;25(1):3-11
pubmed: 24444179
Lancet. 2014 Mar 29;383(9923):1129-37
pubmed: 24439297
Nanotechnology. 2008 Oct 8;19(40):405102
pubmed: 21832609
Biores Open Access. 2013 Feb;2(1):20-7
pubmed: 23515475
ACS Appl Mater Interfaces. 2016 Mar;8(10):6320-8
pubmed: 26894609