An Anionic Ring Locked into an Anionic Axle: A Metastable Rotaxane with Chemically Activated Electrostatic Stoppers.
host-guest systems
metastable compounds
rotaxanes
self-assembly
supramolecular chemistry
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
07 Nov 2019
07 Nov 2019
Historique:
received:
13
06
2019
revised:
28
08
2019
pubmed:
31
8
2019
medline:
31
8
2019
entrez:
31
8
2019
Statut:
ppublish
Résumé
The use of the electrostatic stoppers concept in the field of mechanically interlocked molecules is reported; these stoppers are chemically sensitive end groups on a linear guest molecule that allows for the conversion of a pseudo-rotaxane species into a rotaxane complex by a change in the medium acidity. The chemical stimulus causes the appearance of negative charges on both ends of the linear component, passing from cationic to anionic, and causing a significant ring-to-axle electrostatic repulsion. This phenomenon has two different and simultaneous effects: 1) destabilizes the complex as a consequence of confining an anionic ring into an anionic axle, and 2) increases the dissociation energy barrier, thus impeding ring extrusion. This newly formed metastable rotaxane species is resistant to solvent and temperature effects and performs as a two-state degenerated molecular shuttle in solution.
Identifiants
pubmed: 31468580
doi: 10.1002/chem.201902735
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14042-14047Subventions
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 255979
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : 282202
Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines: A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003;
S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081-10206;
J.-P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080-11093;
Angew. Chem. 2017, 129, 11228-11242;
J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094-11125;
Angew. Chem. 2017, 129, 11244-11277.
I. T. Harrison, S. Harrison, J. Am. Chem. Soc. 1967, 89, 5723-5724.
C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machine, Wiley, Hoboken, 2017.
A different approach to chemically activated stoppers is the attachment of photoactive end groups on the guest; an example to reversible switch between pseudo-rotaxane and rotaxane complexes based on this methodology was reported in: M. Baroncini, S. Silvi, M. Venturi, A. Credi, Chem. Eur. J. 2010, 16, 11580-11587.
Y. Kawaguchi, A. Harada, J. Am. Chem. Soc. 2000, 122, 3797-3798;
An application of this principle has been recently published: Y. Takashima, K. Otani, Y. Kobayashi, H. Aramoto, M. Nakahata, H. Yamaguchi, A. Harada, Macromolecules 2018, 51, 6318-6326.
H. Li, C. Cheng, P. R. McGonigal, A. C. Fahrenbach, M. Frasconi, W.-G. Liu, Z. Zhu, Y. Zhao, C. Ke, J. Lei, R. M. Young, S. M. Dyar, D. T. Co, Y.-W. Yang, Y. Y. Botros, W. A. Goddard III, M. R. Wasielewski, R. D. Astumian, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 18609-18620;
M. Hmadeh, A. C. Fahrenbach, S. Basu, A. Trabolsi, D. Benítez, H. Li, A.-M. Albrecht-Gary, M. Elhabiri, J. F. Stoddart, Chem. Eur. J. 2011, 17, 6076-6087.
Electrostatic effects have also been used to control the stability and shuttling dynamics in mechanically interlocked molecules, see for example:
E. Lestini, K. Nikitin, H. Müller-Bunz, D. Fitzmaurice, Chem. Eur. J. 2008, 14, 1095-1106;
H. Li, Z. Zhu, A. C. Fahrenbach, B. M. Savoie, C. Ke, J. C. Barnes, J. Lei, Y.-L. Zhao, L. M. Lilley, T. J. Marks, M. A. Ratner, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 456-467;
H. Li, Y.-L. Zhao, A. C. Fahrenbach, S.-Y. Kim, W. F. Paxton, J. F. Stoddart, Org. Biomol. Chem. 2011, 9, 2240-2250;
P. Ghosh, G. Federwisch, M. Kogej, C. A. Schalley, D. Haase, W. Saak, A. Lützen, R. M. Gschwind, Org. Biomol. Chem. 2005, 3, 2691-2700;
J. Berná, M. Alajarín, C. Marín-Rodríguez, C. Franco-Pujante, Chem. Sci. 2012, 3, 2314-2320.
A. E. Kaifer, W. Li, S. Silvi, V. Sindelar, Chem. Commun. 2012, 48, 6693-6695;
V. Sindelar, S. Silvi, A. E. Kaifer, Chem. Commun. 2006, 2185-2187.
A. Carrasco-Ruiz, J. Tiburcio, Org. Lett. 2015, 17, 1858-1861.
An alternative approach to prepare interlocked molecules has been previously reported by our group. The described approach is conceptually different from the one reported in this manuscript. In the previous report, we rely on the use of electrostatic assistance to slide a bulky group through a ring, after removing the electrostatic effect the ring gets trapped into the axle by steric effects between the ring and the neutral terminal groups on the axle:
A. C. Catalán, J. Tiburcio, Chem. Commun. 2016, 52, 9526-9529;
M. A. Soto, J. Tiburcio, Chem. Commun. 2016, 52, 14149-14152.
Steric effects have been used to control the dynamics in mechanically interlocked molecules by the so-called speed bumps, see for example:
J. O. Jeppesen, S. A. Vignon, J. F. Stoddart, Chem. Eur. J. 2003, 9, 4611-4625;
J. V. Hernández, E. R. Kay, D. A. Leigh, Science 2004, 306, 1532-1537;
P. G. Young, K. Hirose, Y. Tobe, J. Am. Chem. Soc. 2014, 136, 7899-7906;
C. F. A. Gómez-Durán, W. Liu, M. L. Betancourt-Mendiola, B. D. Smith, J. Org. Chem. 2017, 82, 8334-8341;
W. Liu, E. M. Peck, K. D. Hendzel, B. D. Smith, Org. Lett. 2015, 17, 5268-5271.
D. J. Hoffart, J. Tiburcio, A. de la Torre, L. K. Knight, S. J. Loeb, Angew. Chem. Int. Ed. 2008, 47, 97-101;
Angew. Chem. 2008, 120, 103-107.
L. A. Vermeulen, M. E. Thompson, Nature 1992, 358, 656-658;
J. L. Snover, H. Byrd, E. P. Suponeva, E. Vicenzi, M. E. Thompson, Chem. Mater. 1996, 8, 1490-1499.
CCDC 1863846 [PEV-H][Br]2 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
R. Cervantes, R. I. Sánchez, J. Tiburcio, Chem. Eur. J. 2013, 19, 4051-4057.
The observed difference can be due to the nature of the solvent; reported values were determined in pure methanol, whereas the association constant for [PEV-H⊂DSDB24C8] was measured in a mixture of methanol/water (4:1, v/v). It is known that, in general, water reduces the stability of supramolecular complexes.
A. M. Koster, G. Geudtner, A. Alvarez-Ibarra, P. Calaminici, M. E. Casida, J. Carmona-Espindola, V. D. Dominguez, R. Flores-Moreno, G. U. Gamboa, A. Goursot, T. Heine, A. Ipatov, A. de la Lande, F. Janetzko, J. M. del Campo, D. Mejia-Rodriguez, J. U. Reveles, J. Vasquez-Perez, A. Vela, B. Zuniga-Gutierrez, D. R. Salahub, deMon2k, Version 4.4.5x, 2016, The deMon developers, Cinvestav, Mexico City.
See for example:
Y. Tachibana, N. Kihara, Y. Furusho, T. Takata, Org. Lett. 2004, 6, 4507-4509;
G. J. E. Davidson, S. J. Loeb, N. A. Parekh, J. A. Wisner, J. Chem. Soc. Dalton Trans. 2001, 3135-3136;
D. J. Mercer, S. J. Vella, L. Guertin, N. D. Suhan, J. Tiburcio, V. N. Vukotic, J. A. Wisner, S. J. Loeb, Eur. J. Org. Chem. 2011, 1763-1770.
All our attempts to isolate the rotaxane complex as a pure compound, either by recrystallization or chromatography, were unsuccessful because the rotaxane is always accompanied by free guest or by some decomposition products, probably induced by presence of the excess base required.
G. Ragazzon, M. Baroncini, M. Venturi, A. Credi, Nat. Nanotechnol. 2015, 10, 70-75;
C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke, J. F. Stoddart, Nat. Nanotechnol. 2015, 10, 547-553;
S. Erbas-Cakmak, S. D. P. Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, M. R. Wilson, Science 2017, 358, 340-343.