Combination Treatment of the Oral CHK1 Inhibitor, SRA737, and Low-Dose Gemcitabine Enhances the Effect of Programmed Death Ligand 1 Blockade by Modulating the Immune Microenvironment in SCLC.
Administration, Oral
Animals
Combined Modality Therapy
/ methods
Deoxycytidine
/ analogs & derivatives
Female
Heterocyclic Compounds, 4 or More Rings
/ pharmacology
Humans
Immunotherapy
/ methods
Lung Neoplasms
/ drug therapy
Mice
Programmed Cell Death 1 Receptor
/ antagonists & inhibitors
Small Cell Lung Carcinoma
/ drug therapy
Tumor Microenvironment
/ immunology
Xenograft Model Antitumor Assays
Gemcitabine
DNA damage response
Immune checkpoint blockade
Low-dose gemcitabine
SCLC
Journal
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
ISSN: 1556-1380
Titre abrégé: J Thorac Oncol
Pays: United States
ID NLM: 101274235
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
07
07
2019
revised:
15
08
2019
accepted:
18
08
2019
pubmed:
31
8
2019
medline:
29
8
2020
entrez:
31
8
2019
Statut:
ppublish
Résumé
Despite the enthusiasm surrounding cancer immunotherapy, most SCLC patients show very modest response to immune checkpoint inhibitor monotherapy treatment. Therefore, there is growing interest in combining immune checkpoint blockade with chemotherapy and other treatments to enhance immune checkpoint blockade efficacy. Based on favorable clinical trial results, chemotherapy and immunotherapy combinations have been recently approved by the U.S. Food and Drug Administration for frontline treatment for SCLC. Here, we show that combined treatment of SRA737, an oral CHK1 inhibitor, and anti-programmed death ligand 1 (PD-L1) leads to an antitumor response in multiple cancer models, including SCLC. We further show that combining low, non-cytotoxic doses of gemcitabine with SRA737 + anti-PD-L1/anti-PD-1 significantly increased antitumorigenic CD8+ cytotoxic T cells, dendritic cells, and M1 macrophage populations in an SCLC model. This regimen also led to a significant decrease in immunosuppressive M2 macrophage and myeloid-derived suppressor cell populations, as well as an increase in the expression of the type I interferon beta 1 gene, IFNβ, and chemokines, CCL5 and CXCL10. Given that anti-PD-L1/anti-PD-1 drugs have recently been approved as monotherapy and in combination with chemotherapy for the treatment of SCLC, and that the SRA737 + low dose gemcitabine regimen is currently in clinical trials for SCLC and other malignancies, our preclinical data provide a strong rational for combining this regimen with inhibitors of the PD-L1/PD-1 pathway.
Identifiants
pubmed: 31470128
pii: S1556-0864(19)30692-6
doi: 10.1016/j.jtho.2019.08.009
pmc: PMC7141083
mid: NIHMS1051189
pii:
doi:
Substances chimiques
Heterocyclic Compounds, 4 or More Rings
0
Programmed Cell Death 1 Receptor
0
SRA737
0
Deoxycytidine
0W860991D6
Gemcitabine
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2152-2163Subventions
Organisme : NCI NIH HHS
ID : U01 CA213273
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA207295
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA070907
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009666
Pays : United States
Informations de copyright
Copyright © 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Références
Clin Cancer Res. 2017 Jul 15;23(14):3711-3720
pubmed: 28167507
Clin Cancer Res. 2017 Oct 15;23(20):6239-6253
pubmed: 28698200
J Clin Oncol. 2018 Aug 10;36(23):2386-2394
pubmed: 29906251
Clin Cancer Res. 2013 Nov 15;19(22):6322-8
pubmed: 24077350
Nature. 2017 Aug 24;548(7668):461-465
pubmed: 28738408
Nature. 2017 Aug 24;548(7668):466-470
pubmed: 28759889
Nat Rev Cancer. 2019 May;19(5):289-297
pubmed: 30926931
Cancer Discov. 2019 May;9(5):646-661
pubmed: 30777870
Cancer Discov. 2018 May;8(5):537-555
pubmed: 29653955
Oncotarget. 2017 Apr 25;8(17):28575-28587
pubmed: 28212573
N Engl J Med. 2018 Dec 6;379(23):2220-2229
pubmed: 30280641
Cancer Res. 2017 Jul 15;77(14):3870-3884
pubmed: 28490518
Bioinformatics. 2015 May 15;31(10):1692-4
pubmed: 25600946
Oncotarget. 2017 Sep 1;8(43):73419-73432
pubmed: 29088717
Lancet Oncol. 2016 Jul;17(7):883-895
pubmed: 27269741
Cancer Discov. 2012 Sep;2(9):798-811
pubmed: 22961666
PLoS One. 2016 Apr 07;11(4):e0152584
pubmed: 27055253
Cancer Discov. 2013 Dec;3(12):1364-77
pubmed: 24078773
Nature. 2009 Oct 8;461(7265):788-92
pubmed: 19776740
Science. 2013 Feb 15;339(6121):786-91
pubmed: 23258413
Cancer Discov. 2017 Jun;7(6):620-629
pubmed: 28242752
Int J Cancer. 2012 Sep 15;131(6):E928-37
pubmed: 22532287