Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
02 09 2019
Historique:
received: 03 09 2018
accepted: 12 08 2019
entrez: 4 9 2019
pubmed: 4 9 2019
medline: 31 12 2019
Statut: epublish

Résumé

Neuroinflammation is one of the hallmarks of Parkinson's disease (PD) and may contribute to midbrain dopamine (DA) neuron degeneration. Recent studies link chronic inflammation with failure to resolve early inflammation, a process operated by specialized pro-resolving mediators, including resolvins. However, the effects of stimulating the resolution of inflammation in PD - to modulate disease progression - still remain unexplored. Here we show that rats overexpressing human α-synuclein (Syn) display altered DA neuron properties, reduced striatal DA outflow and motor deficits prior to nigral degeneration. These early alterations are coupled with microglia activation and perturbations of inflammatory and pro-resolving mediators, namely IFN-γ and resolvin D1 (RvD1). Chronic and early RvD1 administration in Syn rats prevents central and peripheral inflammation, as well as neuronal dysfunction and motor deficits. We also show that endogenous RvD1 is decreased in human patients with early-PD. Our results suggest there is an imbalance between neuroinflammatory and pro-resolving processes in PD.

Identifiants

pubmed: 31477726
doi: 10.1038/s41467-019-11928-w
pii: 10.1038/s41467-019-11928-w
pmc: PMC6718379
doi:

Substances chimiques

SNCA protein, human 0
alpha-Synuclein 0
resolvin D1 0
Docosahexaenoic Acids 25167-62-8

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3945

Subventions

Organisme : NIGMS NIH HHS
ID : P01 GM095467
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM038765
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

Schapira, A. H. V. & Tolosa, E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat. Rev. Neurol. 6, 309–317 (2010).
pubmed: 20479780 doi: 10.1038/nrneurol.2010.52
Lee, V. M.-Y. & Trojanowski, J. Q. Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).
pubmed: 17015225 doi: 10.1016/j.neuron.2006.09.026
Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).
pubmed: 9197268 doi: 10.1126/science.276.5321.2045
Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).
pubmed: 9278044 doi: 10.1038/42166
Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).
pubmed: 14593171 doi: 10.1126/science.1090278
Chartier-Harlin, M.-C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).
pubmed: 15451224 doi: 10.1016/S0140-6736(04)17103-1
Burbulla, L. F. et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261 (2017).
pubmed: 28882997 pmcid: 6021018 doi: 10.1126/science.aam9080
Liss, B. et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat. Neurosci. 8, 1742–1751 (2005).
pubmed: 16299504 doi: 10.1038/nn1570
Mor, D. E. et al. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat. Neurosci. 20, 1560–1568 (2017).
pubmed: 28920936 pmcid: 5893155 doi: 10.1038/nn.4641
Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 30, 244–250 (2007).
pubmed: 17418429 doi: 10.1016/j.tins.2007.03.009
Surmeier, D. J. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol. 6, 933–938 (2007).
pubmed: 17884683 doi: 10.1016/S1474-4422(07)70246-6
Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).
pubmed: 19296921 doi: 10.1016/S1474-4422(09)70062-6
McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).
pubmed: 3399080 doi: 10.1212/WNL.38.8.1285
Blum-Degen, D. et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20 (1995).
pubmed: 8787820 doi: 10.1016/0304-3940(95)12192-7
Mogi, M. et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci. Lett. 165, 208–210 (1994).
pubmed: 8015728 doi: 10.1016/0304-3940(94)90746-3
Zhang, W. et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).
pubmed: 15791003 doi: 10.1096/fj.04-2751com
Béraud, D. et al. Microglial activation and antioxidant responses induced by the Parkinson’s disease protein α-synuclein. J. Neuroimmune Pharm. 8, 94–117 (2013).
doi: 10.1007/s11481-012-9401-0
Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).
pubmed: 2089275 doi: 10.1016/0306-4522(90)90229-W
Kim, W. G. et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316 (2000).
pubmed: 10934283 pmcid: 6772569 doi: 10.1523/JNEUROSCI.20-16-06309.2000
Maatouk, L. et al. TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nat. Commun. 9, 2450 (2018).
pubmed: 29934589 pmcid: 6015079 doi: 10.1038/s41467-018-04569-y
Ros-Bernal, F. et al. Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc. Natl Acad. Sci. USA 108, 6632–6637 (2011).
pubmed: 21467220 pmcid: 3080980 doi: 10.1073/pnas.1017820108
Marinova-Mutafchieva, L. et al. Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J. Neurochem. 110, 966–975 (2009).
pubmed: 19549006 doi: 10.1111/j.1471-4159.2009.06189.x
Gao, H.-M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).
pubmed: 18650345 pmcid: 2702093 doi: 10.1523/JNEUROSCI.0143-07.2008
Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).
pubmed: 24899309 pmcid: 4263681 doi: 10.1038/nature13479
Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).
pubmed: 11034610 pmcid: 2195872 doi: 10.1084/jem.192.8.1197
Chiurchiù, V., Leuti, A. & Maccarrone, M. Bioactive lipids and chronic inflammation: managing the fire within. Front. Immunol. 9, 38 (2018).
pubmed: 29434586 pmcid: 5797284 doi: 10.3389/fimmu.2018.00038
Nuber, S. et al. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats. Brain J. Neurol. 136, 412–432 (2013).
doi: 10.1093/brain/aws358
Kohl, Z. et al. Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson’s disease. Neurobiol. Dis. 85, 206–217 (2016).
pubmed: 26523794 doi: 10.1016/j.nbd.2015.10.021
Janezic, S. et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc. Natl Acad. Sci. USA 110, E4016–4025 (2013).
pubmed: 24082145 pmcid: 3801069 doi: 10.1073/pnas.1309143110
Seutin, V., Massotte, L., Renette, M. F. & Dresse, A. Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons. Neuroreport 12, 255–258 (2001).
pubmed: 11209930 doi: 10.1097/00001756-200102120-00015
Neuhoff, H., Neu, A., Liss, B. & Roeper, J. I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22, 1290–1302 (2002).
pubmed: 11850457 pmcid: 6757558 doi: 10.1523/JNEUROSCI.22-04-01290.2002
Lacey, M. G., Mercuri, N. B. & North, R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J. Physiol. 401, 437–453 (1988).
pubmed: 2459376 pmcid: 1191858 doi: 10.1113/jphysiol.1988.sp017171
Beckstead, M. J., Grandy, D. K., Wickman, K. & Williams, J. T. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 42, 939–946 (2004).
pubmed: 15207238 doi: 10.1016/j.neuron.2004.05.019
Cruz, H. G. et al. Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat. Neurosci. 7, 153–159 (2004).
pubmed: 14745451 doi: 10.1038/nn1181
Lacey, M. G., Mercuri, N. B. & North, R. A. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J. Neurosci. 9, 1233–1241 (1989).
pubmed: 2703874 pmcid: 6569880 doi: 10.1523/JNEUROSCI.09-04-01233.1989
Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).
pubmed: 9774106 doi: 10.1038/26758
Wolfart, J. & Roeper, J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci. 22, 3404–3413 (2002).
pubmed: 11978817 pmcid: 6758365 doi: 10.1523/JNEUROSCI.22-09-03404.2002
Seutin, V., Mkahli, F., Massotte, L. & Dresse, A. Calcium release from internal stores is required for the generation of spontaneous hyperpolarizations in dopaminergic neurons of neonatal rats. J. Neurophysiol. 83, 192–197 (2000).
pubmed: 10634866 doi: 10.1152/jn.2000.83.1.192
Yoshizaki, K. et al. Ca(2+)-induced Ca2+ release and its activation in response to a single action potential in rabbit otic ganglion cells. J. Physiol. 486, 177–187 (1995).
pubmed: 7562634 pmcid: 1156507 doi: 10.1113/jphysiol.1995.sp020801
Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82 (1998).
pubmed: 9665131 doi: 10.1038/27919
Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).
pubmed: 21068725 pmcid: 4465557 doi: 10.1038/nature09536
Su, X. et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging 29, 1690–1701 (2008).
pubmed: 17537546 doi: 10.1016/j.neurobiolaging.2007.04.006
Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).
pubmed: 23463005 doi: 10.1038/ncomms2534
Mount, M. P. et al. Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J. Neurosci. 27, 3328–3337 (2007).
pubmed: 17376993 pmcid: 6672486 doi: 10.1523/JNEUROSCI.5321-06.2007
Main, B. S. et al. Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson’s disease. Glia 64, 1590–1604 (2016).
pubmed: 27404846 doi: 10.1002/glia.23028
Austin, S. A., Floden, A. M., Murphy, E. J. & Combs, C. K. Alpha-synuclein expression modulates microglial activation phenotype. J. Neurosci. 26, 10558–10563 (2006).
pubmed: 17035541 pmcid: 6674709 doi: 10.1523/JNEUROSCI.1799-06.2006
Sanchez-Guajardo, V., Tentillier, N. & Romero-Ramos, M. The relation between α-synuclein and microglia in Parkinson’s disease: recent developments. Neuroscience 302, 47–58 (2015).
pubmed: 25684748 doi: 10.1016/j.neuroscience.2015.02.008
Chiurchiù, V. et al. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci. Transl. Med. 8, 353ra111 (2016).
pubmed: 27559094 pmcid: 5149396 doi: 10.1126/scitranslmed.aaf7483
Bisicchia, E. et al. Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage via ALX/FPR2 receptor-regulated microRNAs. Mol. Neurobiol. 55, 6894–6905 (2018).
pubmed: 29357041 doi: 10.1007/s12035-018-0889-z
Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).
pubmed: 19409267 pmcid: 2677560 doi: 10.1016/j.neuron.2009.01.033
Philippart, F. et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J. Neurosci. 36, 7234–7245 (2016).
pubmed: 27383597 pmcid: 6705535 doi: 10.1523/JNEUROSCI.0459-16.2016
Guzman, J. N., Sánchez-Padilla, J., Chan, C. S. & Surmeier, D. J. Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011–11019 (2009).
pubmed: 19726659 pmcid: 2784968 doi: 10.1523/JNEUROSCI.2519-09.2009
Khaliq, Z. M. & Bean, B. P. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30, 7401–7413 (2010).
pubmed: 20505107 pmcid: 2892804 doi: 10.1523/JNEUROSCI.0143-10.2010
Betzer, C. et al. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep. 19, e44617 (2018).
pubmed: 29599149 pmcid: 5934765 doi: 10.15252/embr.201744617
Beal, M. F. Parkinson’s disease: a model dilemma. Nature 466, S8–10 (2010).
pubmed: 20739935 doi: 10.1038/466S8a
Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N. & Selkoe, D. J. Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J. Biol. Chem. 278, 49874–49881 (2003).
pubmed: 14507911 doi: 10.1074/jbc.M309127200
Zimmer, L., Durand, G., Guilloteau, D. & Chalon, S. n-3 polyunsaturated fatty acid deficiency and dopamine metabolism in the rat frontal cortex. Lipids 34, S251 (1999).
pubmed: 10419169 doi: 10.1007/BF02562309
Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).
pubmed: 24471431 pmcid: 5001846 doi: 10.1146/annurev-immunol-032713-120240
Benarroch, E. E. Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81, 1079–1088 (2013).
pubmed: 23946308 doi: 10.1212/WNL.0b013e3182a4a577
Smith, A. M. et al. Mitochondrial dysfunction and increased glycolysis in prodromal and early Parkinson’s blood cells. Mov. Disord. 33, 1580–1590 (2018).
pubmed: 30294923 pmcid: 6221131 doi: 10.1002/mds.104
Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).
pubmed: 28636593 pmcid: 5626019 doi: 10.1038/nature22815
Kobo, H. et al. Down-regulation of B cell-related genes in peripheral blood leukocytes of Parkinson’s disease patients with and without GBA mutations. Mol. Genet. Metab. 117, 179–185 (2016).
pubmed: 26410072 doi: 10.1016/j.ymgme.2015.09.005
Harms, A. S. et al. α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathol. Commun. 5, 85 (2017).
pubmed: 29162163 pmcid: 5698965 doi: 10.1186/s40478-017-0494-9
Harms, A. S. et al. Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and neurodegeneration in a model of Parkinson disease. Exp. Neurol. 300, 179–187 (2018).
pubmed: 29155051 doi: 10.1016/j.expneurol.2017.11.010
Peralta Ramos, J. M. et al. Peripheral inflammation regulates CNS immune surveillance through the recruitment of inflammatory monocytes upon systemic α-Synuclein administration. Front. Immunol. 10, 80 (2019).
pubmed: 30761145 pmcid: 6361759 doi: 10.3389/fimmu.2019.00080
Theodore, S., Cao, S., McLean, P. J. & Standaert, D. G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol. 67, 1149–1158 (2008).
pubmed: 19018246 doi: 10.1097/NEN.0b013e31818e5e99
De Franceschi, G. et al. Structural and morphological characterization of aggregated species of α-synuclein induced by docosahexaenoic acid. J. Biol. Chem. 286, 22262–22274 (2011).
pubmed: 21527634 pmcid: 3121372 doi: 10.1074/jbc.M110.202937
Perrin, R. J., Woods, W. S., Clayton, D. F. & George, J. M. Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J. Biol. Chem. 275, 34393–34398 (2000).
pubmed: 10952980 doi: 10.1074/jbc.M004851200
Sharon, R. et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 37, 583–595 (2003).
pubmed: 12597857 doi: 10.1016/S0896-6273(03)00024-2
Tian, Y., Zhang, Y., Zhang, R., Qiao, S. & Fan, J. Resolvin D2 recovers neural injury by suppressing inflammatory mediators expression in lipopolysaccharide-induced Parkinson’s disease rat model. Biochem. Biophys. Res. Commun. 460, 799–805 (2015).
pubmed: 25824039 doi: 10.1016/j.bbrc.2015.03.109
Xu, J., Gao, X., Yang, C., Chen, L. & Chen, Z. Resolvin D1 attenuates Mpp+ -induced Parkinson disease via inhibiting inflammation in PC12 cells. Med. Sci. Monit. 23, 2684–2691 (2017).
pubmed: 28572562 pmcid: 5465971 doi: 10.12659/MSM.901995
Wang, G. et al. Formylpeptide receptors promote the migration and differentiation of rat neural stem cells. Sci. Rep. 6, 25946 (2016).
pubmed: 27173446 pmcid: 4865803 doi: 10.1038/srep25946
Zhang, L. et al. Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci. Rep. 7, 206 (2017).
pubmed: 28303030 pmcid: 5428260 doi: 10.1038/s41598-017-00314-5
Federici, M. et al. Paradoxical abatement of striatal dopaminergic transmission by cocaine and methylphenidate. J. Biol. Chem. 289, 264–274 (2014).
pubmed: 24280216 doi: 10.1074/jbc.M113.495499
Krashia, P. et al. On the properties of identified dopaminergic neurons in the mouse substantia nigra and ventral tegmental area. Eur. J. Neurosci. 45, 92–105 (2017).
pubmed: 27519559 doi: 10.1111/ejn.13364
Nobili, A. et al. Ambra1 shapes hippocampal inhibition/excitation balance: role in neurodevelopmental disorders. Mol. Neurobiol. 55, 7921–7940 (2018).
pubmed: 29488136 pmcid: 6132777 doi: 10.1007/s12035-018-0911-5
Cordella, A. et al. Dopamine loss alters the hippocampus-nucleus accumbens synaptic transmission in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol. Dis. 116, 142–154 (2018).
pubmed: 29778899 doi: 10.1016/j.nbd.2018.05.006
Nobili, A. et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun. 8, 14727 (2017).
pubmed: 28367951 pmcid: 5382255 doi: 10.1038/ncomms14727

Auteurs

Paraskevi Krashia (P)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Medicine and Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128, Rome, Italy.

Alberto Cordella (A)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Annalisa Nobili (A)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Medicine and Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128, Rome, Italy.

Livia La Barbera (L)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Mauro Federici (M)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Alessandro Leuti (A)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Medicine and Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128, Rome, Italy.

Federica Campanelli (F)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Giuseppina Natale (G)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Gioia Marino (G)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Valeria Calabrese (V)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Francescangelo Vedele (F)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Veronica Ghiglieri (V)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, 06123, Perugia, Italy.

Barbara Picconi (B)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Giulia Di Lazzaro (G)

Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Tommaso Schirinzi (T)

Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Giulia Sancesario (G)

Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.

Nicolas Casadei (N)

Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.

Olaf Riess (O)

Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.

Sergio Bernardini (S)

Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Antonio Pisani (A)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy.

Paolo Calabresi (P)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Neurology Clinic, Department of Medicine, University of Perugia, Santa Maria della Misericordia Hospital, 06156, Perugia, Italy.

Maria Teresa Viscomi (MT)

Institute of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.

Charles Nicholas Serhan (CN)

Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 02115, Boston, MA, USA.

Valerio Chiurchiù (V)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Medicine and Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128, Rome, Italy.

Marcello D'Amelio (M)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
Department of Medicine and Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128, Rome, Italy.

Nicola Biagio Mercuri (NB)

Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. mercurin@med.uniroma2.it.
Department of Systems Medicine, University of Rome 'Tor Vergata', 00133, Rome, Italy. mercurin@med.uniroma2.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH