NACHO: an R package for quality control of NanoString nCounter data.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
01 02 2020
Historique:
received: 13 05 2019
revised: 24 07 2019
accepted: 14 08 2019
pubmed: 11 9 2019
medline: 18 9 2020
entrez: 11 9 2019
Statut: ppublish

Résumé

The NanoStringTM nCounter® is a platform for the targeted quantification of expression data in biofluids and tissues. While software by the manufacturer is available in addition to third parties packages, they do not provide a complete quality control (QC) pipeline. Here, we present NACHO ('NAnostring quality Control dasHbOard'), a comprehensive QC R-package. The package consists of three subsequent steps: summarize, visualize and normalize. The summarize function collects all the relevant data and stores it in a tidy format, the visualize function initiates a dashboard with plots of the relevant QC outcomes. It contains QC metrics that are measured by default by the manufacturer, but also calculates other insightful measures, including the scaling factors that are needed in the normalization step. In this normalization step, different normalization methods can be chosen to optimally preprocess data. Together, NACHO is a comprehensive method that optimizes insight and preprocessing of nCounter® data. NACHO is available as an R-package on CRAN and the development version on GitHub https://github.com/mcanouil/NACHO. Supplementary data are available at Bioinformatics online.

Identifiants

pubmed: 31504159
pii: 5553566
doi: 10.1093/bioinformatics/btz647
pmc: PMC9883715
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

970-971

Informations de copyright

© The Author(s) 2019. Published by Oxford University Press.

Références

Nucleic Acids Res. 2016 Nov 16;44(20):e151
pubmed: 27471031
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
Bioinformatics. 2012 Jun 1;28(11):1546-8
pubmed: 22513995
Nucleic Acids Res. 2019 Jul 9;47(12):6073-6083
pubmed: 31114909
Genome Biol. 2009;10(6):R64
pubmed: 19531210
Oncotarget. 2015 Feb 28;6(6):4537-50
pubmed: 25738365

Auteurs

Mickaël Canouil (M)

Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France.

Gerard A Bouland (GA)

Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands.

Amélie Bonnefond (A)

Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France.
Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London SW7 2AZ, UK.

Philippe Froguel (P)

Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, F-59000 Lille, France.
Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London SW7 2AZ, UK.

Leen M 't Hart (LM)

Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands.
Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands.
Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.

Roderick C Slieker (RC)

Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands.
Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, Amsterdam UMC, VU University Medical Center, Amsterdam 1081 HV, The Netherlands.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH