Isolation and Immunofluorescent Staining of Fresh Rat Pia-Arachnoid Complex Tissue for Micromechanical Characterization.
atomic force microscopy
fresh-tissue immunofluorescent staining
meninges
micromechanical characterization
pia-arachnoid complex
Journal
Current protocols in neuroscience
ISSN: 1934-8576
Titre abrégé: Curr Protoc Neurosci
Pays: United States
ID NLM: 9706581
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
entrez:
19
9
2019
pubmed:
19
9
2019
medline:
14
7
2020
Statut:
ppublish
Résumé
In this article, we describe a protocol for the isolation and staining of fresh tissue of the inner rat meningeal layers, or pia-arachnoid complex (PAC). The PAC is believed to act as a mechanical damper offering a fundamental layer of protection against brain injury; however, its overall mechanical properties are still rather unexplored. In order to perform micromechanical measurements on the PAC, the tissue must be extracted and characterized while maintaining its native mechanical properties (i.e., avoiding any chemical or physical modification that could alter it). In light of this need, we developed a protocol for the immunofluorescent staining of fresh PAC tissue that does not require any fixation or permeabilization step. This approach will allow researchers to investigate important properties of the anatomy of ex vivo PAC tissue while at the same time offering a platform for the mechanical analysis of this complex material. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Isolation of fresh rat pia-arachnoid complex tissue Basic Protocol 2: Fresh immunofluorescent staining of rat pia-arachnoid complex tissue Alternate Protocol: Adhesion of pia-arachnoid complex tissue to glass slides for micromechanical characterization.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e83Informations de copyright
© 2019 John Wiley & Sons, Inc.
Références
Abraham, J.-A., Linnartz, C., Dreissen, G., Springer, R., Blaschke, S., Rueger, M. A., … Merkel, R. (2019). Directing neuronal outgrowth and network formation of rat cortical neurons by cyclic substrate stretch. Langmuir, 35, 7423-7431. doi: 10.1021/acs.langmuir.8b02003.
Borrell, V., & Marn, O. (2006). Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nature Neuroscience, 9, 1284-1293. doi: 10.1038/nn1764.
Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59, 1-152. doi: 10.1016/j.surfrep.2005.08.003.
Decimo, I., Fumagalli, G., Berton, V., Krampera, M., & Bifari, F. (2012). Meninges: From protective membrane to stem cell niche. American Journal of Stem Cells, 1, 92-105.
Franze, K. (2013). The mechanical control of nervous system development. Development, 140, 3069-3077. doi: 10.1242/dev.079145.
Gautier, H. O., Thompson, A. J., Achouri, S., Koser, D. E., Holtzmann, K., Moeendarbary, E., & Franze, K. (2015). Atomic force microscopy-based force measurements on animal cells and tissues. Biophysical Methods in Cell Biology, 125, 211-235. doi: 10.1016/bs.mcb.2014.10.005.
Groff, B. D., Kinman, A. W. L., Woodroof, J. F., & Pompano, R. R. (2019). Immunofluorescence staining of live lymph node tissue slices. Journal of Immunological Methods, 464, 119-125. doi: 10.1016/j.jim.2018.10.010.
Haase, K., & Pelling, A. E. (2015). Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, 12, 20140970. doi: 10.1098/rsif.2014.0970.
Hansen, J. T. (2017). Netter's clinical anatomy e-book (3rd ed.). Philadelphia, PA: Elsevier Health Sciences.
Jin, X., Lee, J. B., Leung, L. Y., Zhang, L., Yang, K. H., & King, A. I. (2006). Biomechanical response of the bovine pia-arachnoid complex to tensile loading at varying strain-rates. Stapp Car Crash Journal, 50, 637-649.
Jin, X., Ma, C., Zhang, L., Yang, K. H., King, A. I., Dong, G., & Zhang, J. (2007). Biomechanical response of the bovine pia-arachnoid complex to normal traction loading at varying strain rates. Stapp Car Crash Journal, 51, 115-126.
Jin, X., Yang, K. H., & King, A. I. (2011). Mechanical properties of bovine pia-arachnoid complex in shear. Journal of Biomechanics, 44, 467-474. doi: 10.1016/j.jbiomech.2010.09.035.
Kabiraj, A., Gupta, J., Khaitan, T., & Bhattacharya, P. T. (2015). Principle and techniques of immunohistochemistry-A review. International Journal of Biological and Medical Research, 6, 5204-5210.
Krisch, B., Leonhardt, H., & Oksche, A. (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell and Tissue Research, 238, 459-474. doi: 10.1007/bf00219861.
Louveau, A., Filiano, A. J., & Kipnis, J. (2018). Meningeal whole mount preparation and characterization of neural cells by flow cytometry. Current Protocols in Immunology, 121, e50. doi: 10.1002/cpim.50.
Maity, B., Sheff, D., & Fisher, R. A. (2013). Immunostaining: Detection of signaling protein location in tissues, cells and subcellular compartments. Methods in Cell Biology, 113, 81-105. doi: 10.1016/B978-0-12-407239-8.00005-7.
Moeendarbary, E., Weber, I. P., Sheridan, G. K., Koser, D. E., Soleman, S., Haenzi, B., … Franze, K. (2017). The soft mechanical signature of glial scars in the central nervous system. Nature Communications, 8, 14787. doi: 10.1038/ncomms14787.
Mortazavi, M. M., Quadri, S. A., Khan, M. A., Gustin, A., Suriya, S. S., Hassanzadeh, T., … Tubbs, R. S. (2018). Subarachnoid trabeculae: A comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurgery, 111, 279-290. doi: 10.1016/j.wneu.2017.12.041.
Patel, N., & Kirmi, O. (2009). Anatomy and imaging of the normal meninges. Seminars in Ultrasound, CT, and MRI, 30, 559-564. doi: 10.1053/j.sult.2009.08.006.
Ruysch, F., & Ettmller, M. (1699). Epistola, anatomica, problematica, duodecima. Wolter: Amsterdam.
Scott, G. G., Margulies, S. S., & Coats, B. (2016). Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet. Biomechanics and Modeling in Mechanobiology, 15, 1101-1119. doi: 10.1007/s10237-015-0747-0.
Siegenthaler, J. A., & Pleasure, S. J. (2011). We have got you ‘covered’: How the meninges control brain development. Current Opinion in Genetics & Development, 21, 249-255. doi: 10.1016/j.gde.2010.12.005.
Smith, D. H., Wolf, J. A., Lusardi, T. A., Lee, V. M.-Y., & Meaney, D. F. (1999). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. Journal of Neuroscience, 19, 4263-4269. doi: 10.1523/JNEUROSCI.19-11-04263.1999.
Stewart, K., & Schroeder, V. A. (2019). Anesthesia induction and maintenance. JoVE Science Education Database. Lab Animal Research. Retrieved from https://www.jove.com/science-education/10263/anesthesia-induction-and-maintenance.
Thornton, E. E., Krummel, M. F., & Looney, M. R. (2012). Live imaging of the lung. Current Protocols in Cytometry, 60, 12.28.1-12.28.12. doi: 10.1002/0471142956.cy1228s60.
White, J. J., Reeber, S. L., Hawkes, R., & Sillitoe, R. V. (2012). Whole-mount immunohistochemistry for revealing complex brain topography. Journal of Visualized Experiments, 62, e4042. doi: 10.3791/4042.