Axonal transport and neurological disease.
Journal
Nature reviews. Neurology
ISSN: 1759-4766
Titre abrégé: Nat Rev Neurol
Pays: England
ID NLM: 101500072
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
accepted:
19
08
2019
pubmed:
29
9
2019
medline:
30
1
2020
entrez:
28
9
2019
Statut:
ppublish
Résumé
Axonal transport is the process whereby motor proteins actively navigate microtubules to deliver diverse cargoes, such as organelles, from one end of the axon to the other, and is widely regarded as essential for nerve development, function and survival. Mutations in genes encoding key components of the transport machinery, including motor proteins, motor adaptors and microtubules, have been discovered to cause neurological disease. Moreover, disruptions in axonal cargo trafficking have been extensively reported across a wide range of nervous system disorders. However, whether these impairments have a major causative role in, are contributing to or are simply a consequence of neuronal degeneration remains unclear. Therefore, the fundamental relevance of defective trafficking along axons to nerve dysfunction and pathology is often debated. In this article, we review the latest evidence emerging from human and in vivo studies on whether perturbations in axonal transport are indeed integral to the pathogenesis of neurological disease.
Identifiants
pubmed: 31558780
doi: 10.1038/s41582-019-0257-2
pii: 10.1038/s41582-019-0257-2
doi:
Substances chimiques
Cytoskeletal Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
691-703Subventions
Organisme : Medical Research Council
ID : MR/S006990/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Références
Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16–25 (2015).
pubmed: 25724902
doi: 10.1016/j.yexcr.2015.02.016
Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96, 667–679 (2017).
pubmed: 29096079
doi: 10.1016/j.neuron.2017.10.015
Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).
pubmed: 29662141
pmcid: 6457270
doi: 10.1038/s41580-018-0004-3
Villarroel-Campos, D., Schiavo, G. & Lazo, O. M. The many disguises of the signalling endosome. FEBS Lett. 592, 3615–3632 (2018).
pubmed: 30176054
pmcid: 6282995
doi: 10.1002/1873-3468.13235
Maday, S. Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res. 1649, 143–150 (2016).
pubmed: 27038755
pmcid: 5045311
doi: 10.1016/j.brainres.2016.03.047
Ferguson, S. M. Axonal transport and maturation of lysosomes. Curr. Opin. Neurobiol. 51, 45–51 (2018).
pubmed: 29529416
pmcid: 6066426
doi: 10.1016/j.conb.2018.02.020
Rishal, I. & Fainzilber, M. Axon–soma communication in neuronal injury. Nat. Rev. Neurosci. 15, 32–42 (2014).
pubmed: 24326686
doi: 10.1038/nrn3609
Gibbs, K. L., Greensmith, L. & Schiavo, G. Regulation of axonal transport by protein kinases. Trends Biochem. Sci. 40, 597–610 (2015).
pubmed: 26410600
doi: 10.1016/j.tibs.2015.08.003
Brady, S. T. & Morfini, G. A. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol. Dis. 105, 273–282 (2017).
pubmed: 28411118
pmcid: 5522763
doi: 10.1016/j.nbd.2017.04.010
Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front. Cell. Neurosci. 9, 343 (2015).
pubmed: 26441521
pmcid: 4563776
doi: 10.3389/fncel.2015.00343
Barlan, K. & Gelfand, V. I. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol. 9, a025817 (2017).
pubmed: 28461574
pmcid: 5411697
doi: 10.1101/cshperspect.a025817
Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).
pubmed: 21092854
doi: 10.1016/j.neuron.2010.09.039
Hinckelmann, M.-V., Zala, D. & Saudou, F. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol. 23, 634–643 (2013).
pubmed: 24091156
doi: 10.1016/j.tcb.2013.08.007
Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. F. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).
pubmed: 25374356
pmcid: 4269290
doi: 10.1016/j.neuron.2014.10.019
Neefjes, J. & van der Kant, R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66–76 (2014).
pubmed: 24411104
doi: 10.1016/j.tins.2013.11.006
DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 9, 429–444 (2013).
pubmed: 23835535
pmcid: 3959773
doi: 10.1038/nrneurol.2013.126
Millecamps, S. & Julien, J.-P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).
pubmed: 23361386
doi: 10.1038/nrn3380
Prior, R., Van Helleputte, L., Benoy, V. & Van Den Bosch, L. Defective axonal transport: a common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol. Dis. 105, 300–320 (2017).
pubmed: 28238949
doi: 10.1016/j.nbd.2017.02.009
Milde, S., Adalbert, R., Elaman, M. H. & Coleman, M. P. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol. Aging 36, 971–981 (2015).
pubmed: 25443288
pmcid: 4321880
doi: 10.1016/j.neurobiolaging.2014.09.018
Vagnoni, A., Hoffmann, P. C. & Bullock, S. L. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons. J. Cell Sci. 129, 178–190 (2016).
pubmed: 26598558
pmcid: 4732301
Sleigh, J. N. & Schiavo, G. Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo. Matters https://doi.org/10.19185/matters.201605000018 (2016).
Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).
pubmed: 29674711
pmcid: 6019280
doi: 10.1038/s41580-018-0009-y
Rao, A. N. & Baas, P. W. Polarity sorting of microtubules in the axon. Trends Neurosci. 41, 77–88 (2018).
pubmed: 29198454
doi: 10.1016/j.tins.2017.11.002
Baas, P. W., Rao, R. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. Cytoskeleton 73, 442–460 (2016).
pubmed: 26887570
doi: 10.1002/cm.21286
Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl Acad. Sci. USA 98, 7004–7011 (2001).
pubmed: 11416179
doi: 10.1073/pnas.111145398
pmcid: 34614
Carter, A. P., Diamant, A. G. & Urnavicius, L. How dynein and dynactin transport cargos: a structural perspective. Curr. Opin. Struct. Biol. 37, 62–70 (2016).
pubmed: 26773477
doi: 10.1016/j.sbi.2015.12.003
Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303–1314 (2017).
pubmed: 28602352
pmcid: 5473941
doi: 10.1016/j.cell.2017.05.025
McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin–cargo adapter complexes. Science 345, 337–341 (2014).
pubmed: 25035494
pmcid: 4224444
doi: 10.1126/science.1254198
Schlager, M. A. et al. Bicaudal D family adaptor proteins control the velocity of Dynein-based movements. Cell Rep. 8, 1248–1256 (2014).
pubmed: 25176647
doi: 10.1016/j.celrep.2014.07.052
Budzinska, M., Wicher, K. B. & Terenzio, M. Neuronal roles of the bicaudal D family of motor adaptors. Vitam. Horm. 104, 133–152 (2017).
pubmed: 28215293
doi: 10.1016/bs.vh.2016.11.005
DeSantis, M. E. et al. Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170, 1197–1208 (2017).
pubmed: 28886386
pmcid: 5625841
doi: 10.1016/j.cell.2017.08.037
Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).
pubmed: 22939623
pmcid: 3438448
doi: 10.1016/j.cell.2012.07.022
Baumbach, J. et al. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 6, e21768 (2017).
pubmed: 28406398
pmcid: 5413349
doi: 10.7554/eLife.21768
Yi, J. Y. et al. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J. Cell Biol. 195, 193–201 (2011).
pubmed: 22006948
pmcid: 3198168
doi: 10.1083/jcb.201104076
Zyłkiewicz, E. et al. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J. Cell Biol. 192, 433–445 (2011).
pubmed: 21282465
pmcid: 3101096
doi: 10.1083/jcb.201011142
Olenick, M. A. & Holbaur, E. L. F. Dynein activators and adaptors at a glance. J. Cell Sci. 132, jcs227132 (2019).
pubmed: 30877148
doi: 10.1242/jcs.227132
pmcid: 6451413
Griffin, J. W., Price, D. L., Drachman, D. B. & Engel, W. K. Axonal transport to and from the motor nerve ending. Ann. N. Y. Acad. Sci. 274, 31–45 (1976).
pubmed: 60895
doi: 10.1111/j.1749-6632.1976.tb47674.x
Roy, S. Seeing the unseen: the hidden world of slow axonal transport. Neuroscientist 20, 71–81 (2014).
pubmed: 23912032
doi: 10.1177/1073858413498306
Brown, A., Wang, L. & Jung, P. Stochastic simulation of neurofilament transport in axons: the “stop-and-go” hypothesis. Mol. Biol. Cell 16, 4243–4255 (2005).
pubmed: 16000374
pmcid: 1196334
doi: 10.1091/mbc.e05-02-0141
Garner, J. A. & Mahler, H. R. Biogenesis of presynaptic terminal proteins. J. Neurochem. 49, 905–915 (1987).
pubmed: 2440990
doi: 10.1111/j.1471-4159.1987.tb00979.x
Twelvetrees, A. E. et al. The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. Neuron 90, 1000–1015 (2016).
pubmed: 27210554
pmcid: 4893161
doi: 10.1016/j.neuron.2016.04.046
Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P. Fast axonal transport in squid giant axon. Science 218, 1127–1129 (1982).
pubmed: 6183744
doi: 10.1126/science.6183744
Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science 218, 1129–1131 (1982).
pubmed: 6183745
doi: 10.1126/science.6183745
Klinman, E. & Holzbaur, E. L. F. Walking forward with kinesin. Trends Neurosci. 41, 555–556 (2018).
pubmed: 30143179
doi: 10.1016/j.tins.2018.07.006
Schiavo, G., Greensmith, L., Hafezparast, M. & Fisher, E. M. C. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci. 36, 641–651 (2013).
pubmed: 24035135
pmcid: 3824068
doi: 10.1016/j.tins.2013.08.001
Poirier, K. et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 45, 639–647 (2013).
pubmed: 23603762
doi: 10.1038/ng.2613
Tsai, J.-W., Lian, W.-N., Kemal, S., Kriegstein, A. R. & Vallee, R. B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat. Neurosci. 13, 1463–1471 (2010).
pubmed: 21037580
pmcid: 3059207
doi: 10.1038/nn.2665
Doobin, D. J., Kemal, S., Dantas, T. J. & Vallee, R. B. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat. Commun. 7, 12551 (2016).
pubmed: 27553190
pmcid: 4999518
doi: 10.1038/ncomms12551
Hu, D. J.-K. et al. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154, 1300–1313 (2013).
pubmed: 24034252
doi: 10.1016/j.cell.2013.08.024
Tsai, J.-W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat. Neurosci. 10, 970–979 (2007).
pubmed: 17618279
doi: 10.1038/nn1934
Ori-McKenney, K. M. & Vallee, R. B. Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev. 6, 26 (2011).
pubmed: 21612657
pmcid: 3127822
doi: 10.1186/1749-8104-6-26
Poirier, K. et al. Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum. Mol. Genet. 19, 4462–4473 (2010).
pubmed: 20829227
pmcid: 3298850
doi: 10.1093/hmg/ddq377
Jaglin, X. H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41, 746–752 (2009).
pubmed: 19465910
pmcid: 2883584
doi: 10.1038/ng.380
Yamada, K. et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat. Genet. 35, 318–321 (2003).
pubmed: 14595441
doi: 10.1038/ng1261
Cheng, L. et al. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82, 334–349 (2014).
pubmed: 24656932
pmcid: 4002761
doi: 10.1016/j.neuron.2014.02.038
Scoto, M. et al. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy. Neurol. 84, 668–679 (2015).
doi: 10.1212/WNL.0000000000001269
Rossor, A. M. et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain 138, 293–310 (2015).
pubmed: 25497877
doi: 10.1093/brain/awu356
Huynh, W. & Vale, R. D. Disease-associated mutations in human BICD2 hyperactivate motility of dynein–dynactin. J. Cell Biol. 216, 3051–3060 (2017).
pubmed: 28883039
pmcid: 5626548
doi: 10.1083/jcb.201703201
Hoang, H. T., Schlager, M. A., Carter, A. P. & Bullock, S. L. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes. Proc. Natl Acad. Sci. USA 114, E1597–E1606 (2017).
pubmed: 28196890
doi: 10.1073/pnas.1620141114
pmcid: 5338514
Chen, X.-J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524 (2007).
pubmed: 18160659
pmcid: 6673431
doi: 10.1523/JNEUROSCI.4338-07.2007
Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).
pubmed: 12730604
doi: 10.1126/science.1083129
Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA 107, 20523–20528 (2010).
pubmed: 21059924
doi: 10.1073/pnas.1006869107
pmcid: 2996651
Zhao, J. et al. Dync1h1 mutation causes proprioceptive sensory neuron loss and impaired retrograde axonal transport of dorsal root ganglion neurons. CNS Neurosci. Ther. 22, 593–601 (2016).
pubmed: 27080913
pmcid: 6492895
doi: 10.1111/cns.12552
Hwang, S. H. et al. Distal hereditary motor neuropathy type 7B with Dynactin 1 mutation. Mol. Med. Rep. 14, 3362–3368 (2016).
pubmed: 27573046
doi: 10.3892/mmr.2016.5664
Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nat. Genet. 41, 163–165 (2009).
pubmed: 19136952
pmcid: 2813485
doi: 10.1038/ng.293
Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).
pubmed: 12627231
doi: 10.1038/ng1123
Mishima, T. et al. Perry syndrome: a distinctive type of TDP-43 proteinopathy. J. Neuropathol. Exp. Neurol. 76, 676–682 (2017).
pubmed: 28789478
pmcid: 5901076
doi: 10.1093/jnen/nlx049
Lloyd, T. E. et al. The p150
pubmed: 22542187
pmcid: 3353876
doi: 10.1016/j.neuron.2012.02.026
Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. F. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150
pubmed: 18364389
pmcid: 2584350
doi: 10.1093/hmg/ddn092
Moughamian, A. J. & Holzbaur, E. L. F. Dynactin is required for transport initiation from the distal axon. Neuron 74, 331–343 (2012).
pubmed: 22542186
pmcid: 3347924
doi: 10.1016/j.neuron.2012.02.025
Weedon, M. N. et al. Exome sequencing identifies a dync1h1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).
pubmed: 21820100
pmcid: 3155164
doi: 10.1016/j.ajhg.2011.07.002
Rivière, J.-B. et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am. J. Hum. Genet. 89, 219–230 (2011).
pubmed: 21820098
pmcid: 3155159
doi: 10.1016/j.ajhg.2011.06.013
Lee, J.-R. et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Hum. Mutat. 36, 69–78 (2015).
pubmed: 25265257
doi: 10.1002/humu.22709
Tanaka, Y. et al. The molecular motor KIF1A transports the TrkA neurotrophin receptor and is essential for sensory neuron survival and function. Neuron 90, 1215–1229 (2016).
pubmed: 27263974
doi: 10.1016/j.neuron.2016.05.002
Chiba, K. et al. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905690116 (2019).
doi: 10.1073/pnas.1905690116
Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194 (2002).
pubmed: 12355402
pmcid: 385095
doi: 10.1086/344210
Füger, P. et al. Spastic paraplegia mutation N256S in the neuronal microtubule motor KIF5A disrupts axonal transport in a Drosophila HSP model. PLOS Genet. 8, e1003066 (2012).
pubmed: 23209432
pmcid: 3510046
doi: 10.1371/journal.pgen.1003066
Brenner, D. et al. Hot-spot KIF5A mutations cause familial ALS. Brain 141, 688–697 (2018).
pubmed: 29342275
pmcid: 5837483
doi: 10.1093/brain/awx370
Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283 (2018).
pubmed: 29566793
pmcid: 5867896
doi: 10.1016/j.neuron.2018.02.027
Zhao, C. et al. Charcot–Marie–Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587–597 (2001).
pubmed: 11389829
doi: 10.1016/S0092-8674(01)00363-4
Martin, M. et al. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell 10, 3717–3728 (1999).
pubmed: 10564267
pmcid: 25669
doi: 10.1091/mbc.10.11.3717
LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).
pubmed: 12062019
doi: 10.1016/S0896-6273(02)00696-7
Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282–1288 (2005).
pubmed: 15731448
doi: 10.1126/science.1105681
De Vos, K. J. & Hafezparast, M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol. Dis. 105, 283–299 (2017).
pubmed: 28235672
pmcid: 5536153
doi: 10.1016/j.nbd.2017.02.004
Toyoshima, I. et al. Kinesin and cytoplasmic dynein in spinal spheroids with motor neuron disease. J. Neurol. Sci. 159, 38–44 (1998).
pubmed: 9700701
doi: 10.1016/S0022-510X(98)00137-3
Galvin, J. E., Uryu, K., Lee, V. M. & Trojanowski, J. Q. Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. Proc. Natl Acad. Sci. USA 96, 13450–13455 (1999).
pubmed: 10557341
doi: 10.1073/pnas.96.23.13450
pmcid: 23968
Fanara, P. et al. Cerebrospinal fluid-based kinetic biomarkers of axonal transport in monitoring neurodegeneration. J. Clin. Invest. 122, 3159–3169 (2012).
pubmed: 22922254
pmcid: 3428100
doi: 10.1172/JCI64575
Hares, K. et al. Overexpression of kinesin superfamily motor proteins in Alzheimer’s disease. J. Alzheimers Dis. 60, 1511–1524 (2017).
pubmed: 29060936
doi: 10.3233/JAD-170094
Pantelidou, M. et al. Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol. Dis. 26, 577–589 (2007).
pubmed: 17418584
doi: 10.1016/j.nbd.2007.02.005
Hares, K. et al. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol. Appl. Neurobiol. 43, 227–241 (2017).
pubmed: 26785938
doi: 10.1111/nan.12305
Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135, 2058–2073 (2012).
pubmed: 22719003
pmcid: 4571141
doi: 10.1093/brain/aws133
Cash, A. D. et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol. 162, 1623–1627 (2003).
pubmed: 12707046
pmcid: 1851211
doi: 10.1016/S0002-9440(10)64296-4
Zhang, F. et al. Posttranslational modifications of α-tubulin in Alzheimer disease. Transl. Neurodegener. 4, 9 (2015).
pubmed: 26029362
pmcid: 4448339
doi: 10.1186/s40035-015-0030-4
Ren, Y. et al. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33, 68–78 (2015).
pubmed: 25332110
pmcid: 4429885
doi: 10.1002/stem.1854
Cartelli, D. et al. Parkin absence accelerates microtubule aging in dopaminergic neurons. Neurobiol. Aging 61, 66–74 (2018).
pubmed: 29040870
doi: 10.1016/j.neurobiolaging.2017.09.010
Brunden, K. R., Lee, V. M.-Y., Smith, A. B., Trojanowski, J. Q. & Ballatore, C. Altered microtubule dynamics in neurodegenerative disease: therapeutic potential of microtubule-stabilizing drugs. Neurobiol. Dis. 105, 328–335 (2017).
pubmed: 28012891
doi: 10.1016/j.nbd.2016.12.021
Saporta, M. A. et al. Axonal Charcot–Marie–Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp. Neurol. 263, 190–199 (2015).
pubmed: 25448007
doi: 10.1016/j.expneurol.2014.10.005
Xu, C.-C., Denton, K. R., Wang, Z.-B., Zhang, X. & Li, X.-J. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis. Model. Mech. 9, 39–49 (2016).
pubmed: 26586529
pmcid: 4728333
Sleigh, J. N., Vagnoni, A., Twelvetrees, A. E. & Schiavo, G. Methodological advances in imaging intravital axonal transport. F1000Res. 6, 200 (2017).
pubmed: 28344778
pmcid: 5333613
doi: 10.12688/f1000research.10433.1
Guo, W. et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 8, 861 (2017).
pubmed: 29021520
pmcid: 5636840
doi: 10.1038/s41467-017-00911-y
Plucińska, G. & Misgeld, T. Imaging of neuronal mitochondria in situ. Curr. Opin. Neurobiol. 39, 152–163 (2016).
pubmed: 27454347
doi: 10.1016/j.conb.2016.06.006
Hinckelmann, M.-V. et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat. Commun. 7, 13233 (2016).
pubmed: 27775035
pmcid: 5078996
doi: 10.1038/ncomms13233
Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).
pubmed: 24507191
pmcid: 3939050
doi: 10.1016/j.neuron.2013.12.018
Baldwin, K. R., Godena, V. K., Hewitt, V. L. & Whitworth, A. J. Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum. Mol. Genet. 25, 2378–2392 (2016).
pubmed: 27056981
pmcid: 5181624
Lacovich, V. et al. Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37, 58–69 (2017).
pubmed: 28053030
pmcid: 6705673
doi: 10.1523/JNEUROSCI.2305-16.2016
Moutaux, E. et al. Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci. Rep. 8, 13429 (2018).
pubmed: 30194421
pmcid: 6128875
doi: 10.1038/s41598-018-31759-x
Pal, A. et al. High content organelle trafficking enables disease state profiling as powerful tool for disease modelling. Sci. Data 5, 180241 (2018).
pubmed: 30422121
pmcid: 6233479
doi: 10.1038/sdata.2018.241
Berry, B. J., Smith, A. S. T., Young, J. E. & Mack, D. L. Advances and current challenges associated with the use of human induced pluripotent stem cells in modeling neurodegenerative disease. Cells Tissues Organs 205, 331–349 (2018).
pubmed: 30300891
doi: 10.1159/000493018
Drouin-Ouellet, J., Pircs, K., Barker, R. A., Jakobsson, J. & Parmar, M. Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: what have we learned? Front. Neurosci. 11, 530 (2017).
pubmed: 29033781
pmcid: 5625013
doi: 10.3389/fnins.2017.00530
Gibbs, K. L., Kalmar, B., Sleigh, J. N., Greensmith, L. & Schiavo, G. In vivo imaging of axonal transport in murine motor and sensory neurons. J. Neurosci. Methods 257, 26–33 (2016).
pubmed: 26424507
pmcid: 4666412
doi: 10.1016/j.jneumeth.2015.09.018
Lewis, T. L., Turi, G. F., Kwon, S.-K., Losonczy, A. & Polleux, F. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr. Biol. 26, 2602–2608 (2016).
pubmed: 27641765
pmcid: 5235338
doi: 10.1016/j.cub.2016.07.064
Smit-Rigter, L. et al. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr. Biol. 26, 2609–2616 (2016).
pubmed: 27641766
doi: 10.1016/j.cub.2016.07.033
Knabbe, J., Nassal, J. P., Verhage, M. & Kuner, T. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses. J. Physiol. 596, 3759–3773 (2018).
pubmed: 29873393
pmcid: 6092449
doi: 10.1113/JP276022
Mitchell, D. J. et al. Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J. Neurosci. 32, 15495–15510 (2012).
pubmed: 23115187
pmcid: 3500848
doi: 10.1523/JNEUROSCI.5599-11.2012
Pathak, A. et al. Retrograde degenerative signaling mediated by the p75 neurotrophin receptor requires p150
pubmed: 30086304
pmcid: 6093198
doi: 10.1016/j.devcel.2018.07.001
Kiryu-Seo, S., Ohno, N., Kidd, G. J., Komuro, H. & Trapp, B. D. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J. Neurosci. 30, 6658–6666 (2010).
pubmed: 20463228
pmcid: 2885867
doi: 10.1523/JNEUROSCI.5265-09.2010
Badal, K. K. et al. Synapse formation activates a transcriptional program for persistent enhancement in the bi-directional transport of mitochondria. Cell Rep. 26, 507–517 (2019).
pubmed: 30650345
pmcid: 6380353
doi: 10.1016/j.celrep.2018.12.073
Smith, S. E. & Bonni, A. in The Molecular and Cellular Basis of Neurodegenerative Diseases (ed. Wolfe, M. S.) 415–440 (Elsevier, 2018).
Sajic, M. et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLOS Biol. 11, e1001754 (2013).
pubmed: 24391474
pmcid: 3876979
doi: 10.1371/journal.pbio.1001754
Wang, T. et al. Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat. Commun. 7, 12976 (2016).
pubmed: 27687129
pmcid: 5427517
doi: 10.1038/ncomms12976
Shidara, Y. & Hollenbeck, P. J. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J. Neurosci. 30, 11369–11378 (2010).
pubmed: 20739558
pmcid: 2943153
doi: 10.1523/JNEUROSCI.0529-10.2010
Devireddy, S., Liu, A., Lampe, T. & Hollenbeck, P. J. The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J. Neurosci. 35, 9391–9401 (2015).
pubmed: 26109662
pmcid: 4478254
doi: 10.1523/JNEUROSCI.1198-15.2015
Godena, V. K. et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat. Commun. 5, 5245 (2014).
pubmed: 25316291
doi: 10.1038/ncomms6245
Fatouros, C. et al. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21, 3587–3603 (2012).
pubmed: 22611162
doi: 10.1093/hmg/dds190
Butler, V. J. et al. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum. Mol. Genet. 28, 1498–1514 (2019).
pubmed: 30590647
doi: 10.1093/hmg/ddy442
Bergamin, G., Cieri, D., Vazza, G., Argenton, F. & Mostacciuolo, M. L. Zebrafish Tg(hb9:MTS-Kaede): a new in vivo tool for studying the axonal movement of mitochondria. Biochim. Biophys. Acta 1860, 1247–1255 (2016).
pubmed: 26968460
doi: 10.1016/j.bbagen.2016.03.007
Dukes, A. A. et al. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP
pubmed: 27452482
pmcid: 5010936
doi: 10.1016/j.nbd.2016.07.020
Bothwell, M. Recent advances in understanding neurotrophin signaling. F1000Res. 5, 1885 (2016).
doi: 10.12688/f1000research.8434.1
Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997).
pubmed: 9382875
pmcid: 2140205
doi: 10.1083/jcb.139.5.1307
Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50–56 (1999).
pubmed: 10195180
doi: 10.1038/4553
Magrané, J., Cortez, C., Gan, W.-B. & Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23, 1413–1424 (2014).
pubmed: 24154542
doi: 10.1093/hmg/ddt528
Gordon, D. et al. Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol. Dis. 121, 148–162 (2019).
pubmed: 30290270
doi: 10.1016/j.nbd.2018.09.024
Sleigh, J. N. et al. ALS mice carrying pathological mutant TDP-43, but not mutant FUS, display axonal transport defects in vivo. BioRxiv https://doi.org/10.1101/438812 (2018).
Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).
pubmed: 28980624
doi: 10.1038/nrdp.2017.71
Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in “FUSDelta14” knockin mice. Brain 140, 2797–2805 (2017).
pubmed: 29053787
pmcid: 5841203
doi: 10.1093/brain/awx248
Marinkovic, P. et al. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 4296–4301 (2012).
pubmed: 22371592
doi: 10.1073/pnas.1200658109
pmcid: 3306689
Malik, B. et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 20, 1776–1786 (2011).
pubmed: 21317158
pmcid: 3071673
doi: 10.1093/hmg/ddr061
Sorbara, C. D. et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 84, 1183–1190 (2014).
pubmed: 25433639
doi: 10.1016/j.neuron.2014.11.006
Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat. Neurosci. 9, 907–916 (2006).
pubmed: 16751763
doi: 10.1038/nn1717
Halievski, K., Kemp, M. Q., Breedlove, S. M., Miller, K. E. & Jordan, C. L. Non-cell-autonomous regulation of retrograde motoneuronal axonal transport in an SBMA mouse model. eNeuro 3, e0062–16.2016 (2016).
doi: 10.1523/ENEURO.0062-16.2016
Wang, W. et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum. Mol. Genet. 22, 4706–4719 (2013).
pubmed: 23827948
pmcid: 3820133
doi: 10.1093/hmg/ddt319
Morfini, G. A. et al. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLOS ONE 8, e65235 (2013).
pubmed: 23776455
pmcid: 3680447
doi: 10.1371/journal.pone.0065235
Moller, A., Bauer, C. S., Cohen, R. N., Webster, C. P. & De Vos, K. J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet. 26, 4668–4679 (2017).
pubmed: 28973175
pmcid: 5886184
doi: 10.1093/hmg/ddx348
Gibbs, K. L. et al. Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death Dis. 9, 596 (2018).
pubmed: 29789529
pmcid: 5964181
doi: 10.1038/s41419-018-0624-8
Ruschel, J. et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348, 347–352 (2015).
pubmed: 25765066
pmcid: 4445125
doi: 10.1126/science.aaa2958
Mar, F. M., Bonni, A. & Sousa, M. M. Cell intrinsic control of axon regeneration. EMBO Rep. 15, 254–263 (2014).
pubmed: 24531721
pmcid: 3989691
doi: 10.1002/embr.201337723
Clark, A. J. et al. Epothilone D accelerates disease progression in the SOD1
pubmed: 29380402
doi: 10.1111/nan.12473
Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).
pubmed: 17084703
doi: 10.1016/j.cub.2006.09.014
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27, 3571–3583 (2007).
pubmed: 17392473
pmcid: 6672116
doi: 10.1523/JNEUROSCI.0037-07.2007
d’Ydewalle, C. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot–Marie–Tooth disease. Nat. Med. 17, 968–974 (2011).
pubmed: 21785432
doi: 10.1038/nm.2396
Mo, Z. et al. Aberrant GlyRS–HDAC6 interaction linked to axonal transport deficits in Charcot–Marie–Tooth neuropathy. Nat. Commun. 9, 1007 (2018).
pubmed: 29520015
pmcid: 5843656
doi: 10.1038/s41467-018-03461-z
Taes, I. et al. Hdac6 deletion delays disease progression in the SOD1
pubmed: 23364049
doi: 10.1093/hmg/ddt028
Kalinski, A. L. et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell Biol. 218, 1871–1890 (2019).
pubmed: 31068376
doi: 10.1083/jcb.201702187
pmcid: 6548128
Zhang, K. et al. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J. Neurosci. 33, 7451–7462 (2013).
pubmed: 23616551
pmcid: 3722856
doi: 10.1523/JNEUROSCI.4322-12.2013
Cioni, J.-M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56–72 (2019).
pubmed: 30612743
pmcid: 6333918
doi: 10.1016/j.cell.2018.11.030
Zhu, Y. B. & Sheng, Z. H. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J. Biol. Chem. 286, 23432–23440 (2011).
pubmed: 21518771
pmcid: 3123107
doi: 10.1074/jbc.M111.237818
Perlson, E. et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J. Neurosci. 29, 9903–9917 (2009).
pubmed: 19657041
pmcid: 3095444
doi: 10.1523/JNEUROSCI.0813-09.2009
Fu, M. & Holzbaur, E. L. F. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508 (2013).
pubmed: 23897889
pmcid: 3734084
doi: 10.1083/jcb.201302078
Lee, S., Pant, H. C. & Shea, T. B. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J. Cell Sci. 127, 4064–4077 (2014).
pubmed: 25015294
pmcid: 6519427
doi: 10.1242/jcs.153080
Stevenson, A. et al. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neurosci. Lett. 454, 161–164 (2009).
pubmed: 19429076
doi: 10.1016/j.neulet.2009.02.061
Tortarolo, M. et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell. Neurosci. 23, 180–192 (2003).
pubmed: 12812752
doi: 10.1016/S1044-7431(03)00022-8
Ackerley, S. et al. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 26, 354–364 (2004).
pubmed: 15207859
doi: 10.1016/j.mcn.2004.02.009
Dewil, M., dela Cruz, V. F., van den Bosch, L. & Robberecht, W. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1
pubmed: 17346981
doi: 10.1016/j.nbd.2006.12.023
Chico, L. K., Van Eldik, L. J. & Watterson, D. M. Targeting protein kinases in central nervous system disorders. Nat. Rev. Drug Discov. 8, 892–909 (2009).
pubmed: 19876042
pmcid: 2825114
doi: 10.1038/nrd2999
Hetman, M. & Gozdz, A. Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur. J. Biochem. 271, 2050–2055 (2004).
pubmed: 15153093
doi: 10.1111/j.1432-1033.2004.04133.x
Hur, E.-M. & Zhou, F.-Q. GSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539–551 (2010).
pubmed: 20648061
pmcid: 3533361
doi: 10.1038/nrn2870
Coffey, E. T. Nuclear and cytosolic JNK signalling in neurons. Nat. Rev. Neurosci. 15, 285–299 (2014).
pubmed: 24739785
doi: 10.1038/nrn3729
Ally, S., Larson, A. G., Barlan, K., Rice, S. E. & Gelfand, V. I. Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187, 1071–1082 (2009).
pubmed: 20038680
pmcid: 2806283
doi: 10.1083/jcb.200908075
Schuster, M. et al. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol. Biol. Cell 22, 3645–3657 (2011).
pubmed: 21832152
pmcid: 3183019
doi: 10.1091/mbc.e11-03-0217
Wu, C., Watts, M. E. & Rubin, L. L. MAP4K4 activation mediates motor neuron degeneration in amyotrophic lateral sclerosis. Cell Rep. 26, 1143–1156 (2019).
pubmed: 30699345
doi: 10.1016/j.celrep.2019.01.019
Xie, Y. et al. Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fALS mice. Neuron 87, 355–370 (2015).
pubmed: 26182418
pmcid: 4511489
doi: 10.1016/j.neuron.2015.06.026