TAG-RNAi overcomes off-target effects in cancer models.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
01 2020
Historique:
received: 28 01 2019
accepted: 22 08 2019
revised: 21 08 2019
pubmed: 29 9 2019
medline: 8 1 2021
entrez: 28 9 2019
Statut: ppublish

Résumé

RNA interference offers therapeutic opportunities for the clinical targeting of otherwise undruggable oncogenes. However RNAi can have off-target effects that considerably increase treatment risks. To manage these side effects and allow an easy subtraction of their activity in healthy tissues, we present here the TAG-RNAi approach where cells that are not designated targets do not have the mRNA tag. Using TAG-RNAi we first established the off-target signatures of three different siRNAs specific to the Cyclin D1 oncogene by RNA-sequencing of cultured cancer cells expressing a FLAG-HA-tagged-Cyclin D1. Then, by symmetrical allografts of tagged-cancer cells and untagged controls on the left and right flanks of model mice, we demonstrate that TAG-RNAi is a reliable approach to study the functional impact of any oncogene without off-target bias. Finally we show, as examples, that mutation-specific TAG-RNAi can be applied to downregulate two oncogenic mutants, KRAS-G12V or BRAF-V600E, while sparing the expression of the wild-type proteins. TAG-RNAi will thus avoid the traditional off-target limitations of RNAi in future experimental approaches.

Identifiants

pubmed: 31558799
doi: 10.1038/s41388-019-1020-2
pii: 10.1038/s41388-019-1020-2
doi:

Substances chimiques

CCND1 protein, human 0
KRAS protein, human 0
RNA, Small Interfering 0
Cyclin D1 136601-57-5
BRAF protein, human EC 2.7.11.1
Proto-Oncogene Proteins B-raf EC 2.7.11.1
Proto-Oncogene Proteins p21(ras) EC 3.6.5.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

935-945

Références

Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol. 2014;15:591–600.
doi: 10.1038/nrm3860
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.
doi: 10.1038/nrg3162
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.
doi: 10.1038/35888
Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6:240ps7.
doi: 10.1126/scitranslmed.3008362
Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77.
doi: 10.1038/nmat3765
Morrison C. Alnylam prepares to land first RNAi drug approval. Nat Rev Drug Discov. 2018;17:156–7.
doi: 10.1038/nrd.2018.20
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
doi: 10.1038/s41573-019-0017-4
Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3:406–17.
doi: 10.1158/2159-8290.CD-12-0429
Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci USA. 2014;111:E3553–61.
doi: 10.1073/pnas.1412686111
McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170:577–92 e10.
doi: 10.1016/j.cell.2017.07.005
McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, Bryan JG, et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat Commun. 2018;9:4610.
doi: 10.1038/s41467-018-06916-5
Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564–76 e16.
doi: 10.1016/j.cell.2017.06.010
Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004;428:431–7.
doi: 10.1038/nature02371
Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9:57–67.
doi: 10.1038/nrd3010
Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32:97–108.
doi: 10.1016/j.devcel.2014.11.018
Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–3.
doi: 10.1038/nature14580
Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell. 2015;32:7–8.
doi: 10.1016/j.devcel.2014.12.012
Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463:374–8.
doi: 10.1038/nature08684
Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739.
doi: 10.1038/srep15739
Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9:23–32.
doi: 10.1016/j.ccr.2005.12.012
Lehmann S, Relano-Gines A, Resina S, Brillaud E, Casanova D, Vincent C, et al. Systemic delivery of siRNA down regulates brain prion protein and ameliorates neuropathology in prion disorder. PLoS ONE. 2014;9:e88797.
doi: 10.1371/journal.pone.0088797
Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–15.
doi: 10.1016/S0092-8674(00)81879-6
Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Investig. 2012;122:833–43.
doi: 10.1172/JCI60256
Yu Q, Ciemerych MA, Sicinski P. Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene. 2005;24:7114–9.
doi: 10.1038/sj.onc.1208853
Alt JR, Cleveland JL, Hannink M, Diehl JA. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000;14:3102–14.
doi: 10.1101/gad.854900
Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res. 2010;16:2921–6.
doi: 10.1158/1078-0432.CCR-09-2029
Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10:385–94.
doi: 10.1158/1535-7163.MCT-10-0799
Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006;3:199–204.
doi: 10.1038/nmeth854
Sheridan C. Billion-dollar deal propels RNAi to CNS frontier. Nat Biotechnol. 2019.
Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15:512–4.
doi: 10.1038/s41592-018-0011-5
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. 2019;571:275–8.
doi: 10.1038/s41586-019-1314-0
Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C. et al. Adopt a moratoriumon heritable genome editing. Nature. 2019;567:165–8.
doi: 10.1038/d41586-019-00726-5
Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology. 2019;16:281–95.
doi: 10.1038/s41571-019-0166-8
Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs generegulation by endogenous microRNAs. Nature Biotechnology. 2009;27:549–55.
doi: 10.1038/nbt.1543
Guo RL, Lee YT, Byrnes C, Miller JL. Puromycin selection confounds the RNA-Seq profiles of primary human erythroblasts. Transcriptomics. 2017;5.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
doi: 10.1016/j.cell.2011.02.013
Kirk R. Targeted therapies: model reveals addiction to oncogenes. Nat Rev Clin Oncol. 2011;8:691.
pubmed: 22064462
Iribe H, Miyamoto K, Takahashi T, Kobayashi Y, Leo J, Aida M, et al. Chemical modification of the siRNA seed region suppresses off-target effects by steric hindrance to base-pairing with targets. ACS Omega. 2017;2:2055–64.
doi: 10.1021/acsomega.7b00291

Auteurs

Julien Champagne (J)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Laetitia K Linares (LK)

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université de Montpellier, Institut régional du Cancer de Montpellier, F-34298, Montpellier, France.

Benjamin Maurel (B)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Alexandre Zampieri (A)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Maeva Moreno (M)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Ivanna Fuentes (I)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Emeric Dubois (E)

MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094, Montpellier Cedex 5, France.

Dany Severac (D)

MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094, Montpellier Cedex 5, France.

Adrien Decorsière (A)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France.
INSERM, U1191, F-34094, Montpellier, France.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France.

Frédéric Bienvenu (F)

CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094, Montpellier, France. frederic.bienvenu@igf.cnrs.fr.
INSERM, U1191, F-34094, Montpellier, France. frederic.bienvenu@igf.cnrs.fr.
Université de Montpellier, UMR-5203, F-34094, Montpellier, France. frederic.bienvenu@igf.cnrs.fr.
Laboratory of Excellence From Genome and Epigenome to Molecular Medicine (EpiGenMed), F-34094, Montpellier, France. frederic.bienvenu@igf.cnrs.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH