TAG-RNAi overcomes off-target effects in cancer models.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
28
01
2019
accepted:
22
08
2019
revised:
21
08
2019
pubmed:
29
9
2019
medline:
8
1
2021
entrez:
28
9
2019
Statut:
ppublish
Résumé
RNA interference offers therapeutic opportunities for the clinical targeting of otherwise undruggable oncogenes. However RNAi can have off-target effects that considerably increase treatment risks. To manage these side effects and allow an easy subtraction of their activity in healthy tissues, we present here the TAG-RNAi approach where cells that are not designated targets do not have the mRNA tag. Using TAG-RNAi we first established the off-target signatures of three different siRNAs specific to the Cyclin D1 oncogene by RNA-sequencing of cultured cancer cells expressing a FLAG-HA-tagged-Cyclin D1. Then, by symmetrical allografts of tagged-cancer cells and untagged controls on the left and right flanks of model mice, we demonstrate that TAG-RNAi is a reliable approach to study the functional impact of any oncogene without off-target bias. Finally we show, as examples, that mutation-specific TAG-RNAi can be applied to downregulate two oncogenic mutants, KRAS-G12V or BRAF-V600E, while sparing the expression of the wild-type proteins. TAG-RNAi will thus avoid the traditional off-target limitations of RNAi in future experimental approaches.
Identifiants
pubmed: 31558799
doi: 10.1038/s41388-019-1020-2
pii: 10.1038/s41388-019-1020-2
doi:
Substances chimiques
CCND1 protein, human
0
KRAS protein, human
0
RNA, Small Interfering
0
Cyclin D1
136601-57-5
BRAF protein, human
EC 2.7.11.1
Proto-Oncogene Proteins B-raf
EC 2.7.11.1
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
935-945Références
Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol. 2014;15:591–600.
doi: 10.1038/nrm3860
Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.
doi: 10.1038/nrg3162
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.
doi: 10.1038/35888
Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Sci Transl Med. 2014;6:240ps7.
doi: 10.1126/scitranslmed.3008362
Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77.
doi: 10.1038/nmat3765
Morrison C. Alnylam prepares to land first RNAi drug approval. Nat Rev Drug Discov. 2018;17:156–7.
doi: 10.1038/nrd.2018.20
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
doi: 10.1038/s41573-019-0017-4
Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3:406–17.
doi: 10.1158/2159-8290.CD-12-0429
Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci USA. 2014;111:E3553–61.
doi: 10.1073/pnas.1412686111
McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170:577–92 e10.
doi: 10.1016/j.cell.2017.07.005
McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, Bryan JG, et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat Commun. 2018;9:4610.
doi: 10.1038/s41467-018-06916-5
Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564–76 e16.
doi: 10.1016/j.cell.2017.06.010
Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004;428:431–7.
doi: 10.1038/nature02371
Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 2010;9:57–67.
doi: 10.1038/nrd3010
Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32:97–108.
doi: 10.1016/j.devcel.2014.11.018
Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–3.
doi: 10.1038/nature14580
Stainier DY, Kontarakis Z, Rossi A. Making sense of anti-sense data. Dev Cell. 2015;32:7–8.
doi: 10.1016/j.devcel.2014.12.012
Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463:374–8.
doi: 10.1038/nature08684
Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739.
doi: 10.1038/srep15739
Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9:23–32.
doi: 10.1016/j.ccr.2005.12.012
Lehmann S, Relano-Gines A, Resina S, Brillaud E, Casanova D, Vincent C, et al. Systemic delivery of siRNA down regulates brain prion protein and ameliorates neuropathology in prion disorder. PLoS ONE. 2014;9:e88797.
doi: 10.1371/journal.pone.0088797
Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–15.
doi: 10.1016/S0092-8674(00)81879-6
Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Investig. 2012;122:833–43.
doi: 10.1172/JCI60256
Yu Q, Ciemerych MA, Sicinski P. Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene. 2005;24:7114–9.
doi: 10.1038/sj.onc.1208853
Alt JR, Cleveland JL, Hannink M, Diehl JA. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000;14:3102–14.
doi: 10.1101/gad.854900
Prenen H, Tejpar S, Van Cutsem E. New strategies for treatment of KRAS mutant metastatic colorectal cancer. Clin Cancer Res. 2010;16:2921–6.
doi: 10.1158/1078-0432.CCR-09-2029
Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10:385–94.
doi: 10.1158/1535-7163.MCT-10-0799
Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006;3:199–204.
doi: 10.1038/nmeth854
Sheridan C. Billion-dollar deal propels RNAi to CNS frontier. Nat Biotechnol. 2019.
Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018;15:512–4.
doi: 10.1038/s41592-018-0011-5
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. 2019;571:275–8.
doi: 10.1038/s41586-019-1314-0
Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C. et al. Adopt a moratoriumon heritable genome editing. Nature. 2019;567:165–8.
doi: 10.1038/d41586-019-00726-5
Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology. 2019;16:281–95.
doi: 10.1038/s41571-019-0166-8
Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs generegulation by endogenous microRNAs. Nature Biotechnology. 2009;27:549–55.
doi: 10.1038/nbt.1543
Guo RL, Lee YT, Byrnes C, Miller JL. Puromycin selection confounds the RNA-Seq profiles of primary human erythroblasts. Transcriptomics. 2017;5.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
doi: 10.1016/j.cell.2011.02.013
Kirk R. Targeted therapies: model reveals addiction to oncogenes. Nat Rev Clin Oncol. 2011;8:691.
pubmed: 22064462
Iribe H, Miyamoto K, Takahashi T, Kobayashi Y, Leo J, Aida M, et al. Chemical modification of the siRNA seed region suppresses off-target effects by steric hindrance to base-pairing with targets. ACS Omega. 2017;2:2055–64.
doi: 10.1021/acsomega.7b00291