Short-term repeatability of myocardial blood flow using
Myocardial blood flow
arterial input function
positron emission tomography
rubidium
Journal
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
ISSN: 1532-6551
Titre abrégé: J Nucl Cardiol
Pays: United States
ID NLM: 9423534
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
23
01
2019
accepted:
22
08
2019
pubmed:
29
9
2019
medline:
9
2
2022
entrez:
28
9
2019
Statut:
ppublish
Résumé
We tested the repeatability of myocardial blood flow (MBF) quantified using Twenty-one patients referred for clinical MC with LV-AIF did not change MBF (no MC: 1.01 ± 0.30 mL/min/g vs MC with LV-AIF: 1.01 ± 0.29, P = 0.70), whereas MC with LA-AIF showed significantly lower MBF assessments (0.95 ± 0.28 mL/min/g, P = 0.0006). We report significant improvement for test-retest reproducibility for global MBF following MC (CV; No MC: 16.0, MC (LV-AIF): 9.2, MC (LA-AIF): 8.8). Good inter-operator repeatability was observed for LV-AIF (CV = 4.7) and LA-AIF (CV = 5.6) for global MBF assessments. MC significantly improved the test-retest repeatability between operators and between scans. MBF obtained after MC with LV-AIF were comparable, whereas MBFs after MC and LA-AIF were significantly reduced.
Sections du résumé
BACKGROUND
BACKGROUND
We tested the repeatability of myocardial blood flow (MBF) quantified using
METHODS
METHODS
Twenty-one patients referred for clinical
RESULTS
RESULTS
MC with LV-AIF did not change MBF (no MC: 1.01 ± 0.30 mL/min/g vs MC with LV-AIF: 1.01 ± 0.29, P = 0.70), whereas MC with LA-AIF showed significantly lower MBF assessments (0.95 ± 0.28 mL/min/g, P = 0.0006). We report significant improvement for test-retest reproducibility for global MBF following MC (CV; No MC: 16.0, MC (LV-AIF): 9.2, MC (LA-AIF): 8.8). Good inter-operator repeatability was observed for LV-AIF (CV = 4.7) and LA-AIF (CV = 5.6) for global MBF assessments.
CONCLUSIONS
CONCLUSIONS
MC significantly improved the test-retest repeatability between operators and between scans. MBF obtained after MC with LV-AIF were comparable, whereas MBFs after MC and LA-AIF were significantly reduced.
Identifiants
pubmed: 31559536
doi: 10.1007/s12350-019-01888-5
pii: 10.1007/s12350-019-01888-5
doi:
Substances chimiques
Rubidium Radioisotopes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1718-1725Informations de copyright
© 2019. American Society of Nuclear Cardiology.
Références
Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2018;59:273-93.
doi: 10.2967/jnumed.117.201368
Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow. J Nucl Cardiol 2018;25:635-51.
doi: 10.1007/s12350-016-0591-3
Naya M, Murthy VL, Foster CR, Gaber M, Klein J, Hainer J, et al. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol 2013;61:2098-106.
doi: 10.1016/j.jacc.2013.02.029
Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 2015;16:900-9.
doi: 10.1093/ehjci/jev012
Taqueti VR, Everett BM, Murthy VL, Gaber M, Foster CR, Hainer J, et al. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease. Circulation 2015;131:528-35.
doi: 10.1161/CIRCULATIONAHA.114.009716
Cho SG, Lee SJ, Na MH, Choi YY, Bom HH. Comparison of diagnostic accuracy of PET-derived myocardial blood flow parameters: A meta-analysis. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-01476-z .
doi: 10.1007/s12350-018-01476-z
pubmed: 30390243
Vasquez AF, Johnson NP, Gould KL. Variation in quantitative myocardial perfusion due to arterial input selection. JACC Cardiovasc Imaging 2013;6:559-68.
doi: 10.1016/j.jcmg.2012.11.015
Lee BC, Moody JB, Poitrasson-Riviere A, Melvin AC, Weinberg RL, Corbett JR, et al. Blood pool and tissue phase patient motion effects on (82)rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018. https://doi.org/10.1007/s12350-018-1256-1 .
doi: 10.1007/s12350-018-1256-1
pubmed: 30406609
pmcid: 6151305
Slomka PJ, Diaz-Zamudio M, Dey D, Motwani M, Brodov Y, Choi D, et al. Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease. J Nucl Cardiol 2015;22:1285-95.
doi: 10.1007/s12350-014-0060-9
Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med 2015;56:1345-50.
doi: 10.2967/jnumed.114.153429
Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571-7.
doi: 10.2967/jnumed.112.112219
Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.
pubmed: 7472611
Nakazato R, Berman DS, Dey D, Le Meunier L, Hayes SW, Fermin JS, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography. J Nucl Cardiol 2012;19:265-76.
doi: 10.1007/s12350-011-9496-3
Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.
doi: 10.1007/s00259-007-0478-2
Hyslop NP, White WH. Estimating precision using duplicate measurements. J Air Waste Manag Assoc 2009;59:1032-9.
doi: 10.3155/1047-3289.59.9.1032
Piccinelli M, Votaw JR, Garcia EV. Motion correction and its impact on absolute myocardial blood flow measures with PET. Curr Cardiol Rep 2018;20:34.
doi: 10.1007/s11886-018-0977-8
Koenders SS, van Dijk JD, Jager PL, Ottervanger JP, Slump CH, van Dalen JA. Impact of regadenoson-induced myocardial creep on dynamic Rubidium-82 PET myocardial blood flow quantification. J Nucl Cardiol 2019;26:719-28.
doi: 10.1007/s12350-019-01649-4
Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012;19:997-1006.
doi: 10.1007/s12350-012-9600-3
Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:71-6.
doi: 10.1007/s00259-003-1329-4