Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
10 2019
Historique:
received: 26 03 2019
accepted: 09 08 2019
pubmed: 2 10 2019
medline: 12 2 2020
entrez: 2 10 2019
Statut: ppublish

Résumé

Protein cleavage inside the cell membrane triggers various pathophysiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, about which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors.

Identifiants

pubmed: 31570873
doi: 10.1038/s41594-019-0296-9
pii: 10.1038/s41594-019-0296-9
pmc: PMC6858540
mid: NIHMS1537267
doi:

Substances chimiques

DNA-Binding Proteins 0
Escherichia coli Proteins 0
GlpG protein, E coli 0
Membrane Proteins 0
Peptides 0
Endopeptidases EC 3.4.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

910-918

Subventions

Organisme : NIGMS NIH HHS
ID : P41 GM103485
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI066025
Pays : United States

Références

Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).
doi: 10.1016/S0092-8674(00)80675-3
Urban, S. SnapShot: cartography of intramembrane proteolysis. Cell 167, 1898–1898.e1 (2016).
doi: 10.1016/j.cell.2016.11.043
Verhelst, S. H. L. Intramembrane proteases as drug targets. FEBS J. 284, 1489–1502 (2017).
doi: 10.1111/febs.13979
Dusterhoft, S., Kunzel, U. & Freeman, M. Rhomboid proteases in human disease: mechanisms and future prospects. Biochim. Biophys. Acta 1864, 2200–2209 (2017).
doi: 10.1016/j.bbamcr.2017.04.016
De Strooper, B. & Chavez Gutierrez, L. Learning by failing: ideas and concepts to tackle gamma-secretases in Alzheimer’s disease and beyond. Annu Rev. Pharmacol. Toxicol. 55, 419–437 (2015).
doi: 10.1146/annurev-pharmtox-010814-124309
Urban, S. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat. Rev. Microbiol. 7, 411–423 (2009).
doi: 10.1038/nrmicro2130
Rawson, R. B. et al. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1, 47–57 (1997).
doi: 10.1016/S1097-2765(00)80006-4
De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).
doi: 10.1038/19083
Manolaridis, I. et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301–305 (2013).
doi: 10.1038/nature12754
Urban, S., Lee, J. R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).
doi: 10.1016/S0092-8674(01)00525-6
Kinch, L. N. & Grishin, N. V. Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Biochim. Biophys. Acta 1828, 2937–2943 (2013).
doi: 10.1016/j.bbamem.2013.06.031
Stevenson, L. G. et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl Acad. Sci. USA 104, 1003–1008 (2007).
doi: 10.1073/pnas.0608140104
Baker, R. P., Wijetilaka, R. & Urban, S. Two plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2, e113 (2006).
doi: 10.1371/journal.ppat.0020113
O’Donnell, R. A. et al. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J. Cell Biol. 174, 1023–1033 (2006).
doi: 10.1083/jcb.200604136
Riestra, A. M. et al. A Trichomonas vaginalis rhomboid protease and its substrate modulate parasite attachment and cytolysis of host cells. PLoS Pathog. 11, e1005294 (2015).
doi: 10.1371/journal.ppat.1005294
Lastun, V. L., Grieve, A. G. & Freeman, M. Substrates and physiological functions of secretase rhomboid proteases. Semin. Cell Dev. Biol. 60, 10–18 (2016).
doi: 10.1016/j.semcdb.2016.07.033
Spinazzi, M. & De Strooper, B. PARL: the mitochondrial rhomboid protease. Semin. Cell Dev. Biol. 60, 19–28 (2016).
doi: 10.1016/j.semcdb.2016.07.034
Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).
doi: 10.1021/cr000033x
Samara, N. L., Gao, Y., Wu, J. & Yang, W. Detection of reaction intermediates in Mg
doi: 10.1016/bs.mie.2017.03.022
Radisky, E. S., Lee, J. M., Lu, C. J. & Koshland, D. E. Jr Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proc. Natl Acad. Sci. USA 103, 6835–6840 (2006).
doi: 10.1073/pnas.0601910103
Liu, B., Schofield, C. J. & Wilmouth, R. C. Structural analyses on intermediates in serine protease catalysis. J. Biol. Chem. 281, 24024–24035 (2006).
doi: 10.1074/jbc.M600495200
Wilmouth, R. C. et al. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat. Struct. Biol. 8, 689–694 (2001).
doi: 10.1038/90401
Raper, A. T., Reed, A. J. & Suo, Z. Kinetic mechanism of DNA polymerases: contributions of conformational dynamics and a third divalent metal ion. Chem. Rev. 118, 6000–6025 (2018).
doi: 10.1021/acs.chemrev.7b00685
Morgan, J. L. et al. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531, 329–334 (2016).
doi: 10.1038/nature16966
Nango, E. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016).
doi: 10.1126/science.aah3497
Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).
doi: 10.1038/nature13453
Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017).
doi: 10.1038/nature21400
Sun, L., Li, X. & Shi, Y. Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to gamma-secretase. Curr. Opin. Struct. Biol. 37, 97–107 (2016).
doi: 10.1016/j.sbi.2015.12.008
Strisovsky, K., Sharpe, H. J. & Freeman, M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 36, 1048–1059 (2009).
doi: 10.1016/j.molcel.2009.11.006
Urban, S. & Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 11, 1425–1434 (2003).
doi: 10.1016/S1097-2765(03)00181-3
Cho, S., Dickey, S. W. & Urban, S. Crystal structures and inhibition kinetics reveal a two-stage catalytic mechanism with drug design implications for rhomboid proteolysis. Mol. Cell 61, 329–340 (2016).
doi: 10.1016/j.molcel.2015.12.022
Zoll, S. et al. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 33, 2408–2421 (2014).
doi: 10.15252/embj.201489367
Dickey, S. W., Baker, R. P., Cho, S. & Urban, S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 155, 1270–1281 (2013).
doi: 10.1016/j.cell.2013.10.053
Ticha, A. et al. Sensitive versatile fluorogenic transmembrane peptide substrates for rhomboid intramembrane proteases. J. Biol. Chem. 292, 2703–2713 (2017).
doi: 10.1074/jbc.M116.762849
Moin, S. M. & Urban, S. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. eLife 1, e00173 (2012).
doi: 10.7554/eLife.00173
Urban, S. & Moin, S. M. A subset of membrane-altering agents and gamma-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases. Cell Rep. 8, 1241–1247 (2014).
doi: 10.1016/j.celrep.2014.07.039
Urban, S. & Wolfe, M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl Acad. Sci. USA 102, 1883–1888 (2005).
doi: 10.1073/pnas.0408306102
Zhou, Y. & Zhang, Y. Serine protease acylation proceeds with a subtle re-orientation of the histidine ring at the tetrahedral intermediate. Chem. Commun. (Camb.) 47, 1577–1579 (2011).
doi: 10.1039/C0CC04112B
Schechter, I. Mapping of the active site of proteases in the 1960s and rational design of inhibitors/drugs in the 1990s. Curr. Protein Pept. Sci. 6, 501–512 (2005).
doi: 10.2174/138920305774933286
Baker, R. P. & Urban, S. Architectural and thermodynamic principles underlying intramembrane protease function. Nat. Chem. Biol. 8, 759–768 (2012).
doi: 10.1038/nchembio.1021
Baker, R. P., Young, K., Feng, L., Shi, Y. & Urban, S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl Acad. Sci. USA 104, 8257–8262 (2007).
doi: 10.1073/pnas.0700814104
Xue, Y. & Ha, Y. Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J. Biol. Chem. 287, 3099–3107 (2012).
doi: 10.1074/jbc.M111.310482
Xue, Y. et al. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S′ subsites. Biochemistry 51, 3723–3731 (2012).
doi: 10.1021/bi300368b
Paslawski, W. et al. Cooperative folding of a polytopic alpha-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. Proc. Natl Acad. Sci. USA 112, 7978–7983 (2015).
doi: 10.1073/pnas.1424751112
Xue, Y. & Ha, Y. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. J. Biol. Chem. 288, 16645–16654 (2013).
doi: 10.1074/jbc.M112.438127
Baker, R. P. & Urban, S. Cytosolic extensions directly regulate a rhomboid protease by modulating substrate gating. Nature 523, 101–105 (2015).
doi: 10.1038/nature14357
Wang, Y. & Ha, Y. Open-cap conformation of intramembrane protease GlpG. Proc. Natl Acad. Sci. USA 104, 2098–2102 (2007).
doi: 10.1073/pnas.0611080104
Urban, S. & Baker, R. P. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem. 389, 1107–1115 (2008).
doi: 10.1515/BC.2008.122
Drag, M. & Salvesen, G. S. Emerging principles in protease-based drug discovery. Nat. Rev. Drug Discov. 9, 690–701 (2010).
doi: 10.1038/nrd3053
Kamp, F. et al. Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process. Biophys. J. 108, 1229–1237 (2015).
doi: 10.1016/j.bpj.2014.12.045
Szaruga, M. et al. Alzheimer’s-causing mutations shift αβ length by destabilizing gamma-secretase-abetan interactions. Cell 170, 443–456 e14 (2017).
doi: 10.1016/j.cell.2017.07.004
Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J. & Wolfe, M. S. Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proc. Natl Acad. Sci. USA 113, E509–E518 (2016).
doi: 10.1073/pnas.1512952113
Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).
doi: 10.1107/S0907444994003112
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Baker, R. P. & Urban, S. An inducible reconstitution system for the real-time kinetic analysis of protease activity and inhibition inside the membrane. Methods Enzymol. 584, 229–253 (2017).
doi: 10.1016/bs.mie.2016.10.025
Kreutzberger, A. J. B., Ji, M., Aaron, J., Mihaljevic, L. & Urban, S. Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion. Science 363, eaao0076 (2019).
doi: 10.1126/science.aao0076

Auteurs

Sangwoo Cho (S)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Rosanna P Baker (RP)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Ming Ji (M)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Siniša Urban (S)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. rhomboidprotease@gmail.com.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Humans DNA Methylation Female Male Alcohol Oxidoreductases
Animals Huntington Disease Mitochondria Neurons Mice

Classifications MeSH