Stability of selected reference genes in Sf9 cells treated with extrinsic apoptotic agents.
Animals
Apoptosis
/ drug effects
Camptothecin
/ toxicity
Genes, Insect
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)
/ genetics
Insect Proteins
/ genetics
Limonins
/ toxicity
Peptide Elongation Factors
/ genetics
Real-Time Polymerase Chain Reaction
/ standards
Reference Standards
Reverse Transcriptase Polymerase Chain Reaction
/ standards
Ribosomal Proteins
/ genetics
Sf9 Cells
Spodoptera
Tubulin
/ genetics
Ultraviolet Rays
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 Oct 2019
02 Oct 2019
Historique:
received:
31
05
2019
accepted:
17
09
2019
entrez:
4
10
2019
pubmed:
4
10
2019
medline:
29
10
2020
Statut:
epublish
Résumé
As a tightly controlled cell death process, apoptosis eliminates unwanted cells and plays a vital role in multicellular organisms. Previous study have demonstrated that apoptosis occurred in Spodoptera frugiperda cultured Sf9 cells, which triggered by diverse apoptotic stimuli, including azadirachtin, camptothecin and ultraviolet. Due to its simplicity, high sensitivity and reliable specificity, RT-qPCR has been used widespread for analyzing expression levels of target genes. However, the selection of reference genes influences the accuracy of results profoundly. In this study, eight genes were selected for analyses of their suitability as references for normalizing RT-PCR data in Sf9 cells treated with apoptotic agents. Five algorithms, including NormFinder, BestKeeper, Delta Ct method, geNorm, and RefFinder, were used for stability ranking. Based on comprehensively analysis, the expression stability of selected genes varied in cells with different apoptotic stimuli. The best choices for cells under different apoptosis conditions were listed: EF2 and EF1α for cells treated with azadirachtin; RPL13 and RPL3 for cells treated with camptothecin; EF1α and β-1-TUB for cells irradiated under ultraviolet; and EF1α and EF2 for combinational analyses of samples. Our results not only facilitate a more accurate normalization for RT-qPCR data, but also provide the reliable assurance for further studies of apoptotic mechanisms under different stimulus in Sf9 cells.
Identifiants
pubmed: 31578389
doi: 10.1038/s41598-019-50667-2
pii: 10.1038/s41598-019-50667-2
pmc: PMC6775146
doi:
Substances chimiques
Insect Proteins
0
Limonins
0
Peptide Elongation Factors
0
Ribosomal Proteins
0
Tubulin
0
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)
EC 1.2.1.12
azadirachtin
O4U1SAF85H
Camptothecin
XT3Z54Z28A
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14147Références
Protein Cell. 2016 May;7(5):373-82
pubmed: 27017378
PLoS One. 2015 Jun 01;10(6):e0129482
pubmed: 26030778
J Econ Entomol. 2015 Aug;108(4):2040-7
pubmed: 26470351
Mol Cell Biol. 2015 Jul;35(14):2414-24
pubmed: 25939385
Arch Insect Biochem Physiol. 2015 Jul;89(3):153-68
pubmed: 25828604
Int J Biol Sci. 2017 Nov 27;13(12):1532-1539
pubmed: 29230101
Mol Med Rep. 2015 Apr;11(4):3188-94
pubmed: 25523336
J Econ Entomol. 2010 Apr;103(2):492-6
pubmed: 20429466
PLoS One. 2013;8(3):e58499
pubmed: 23516491
Science. 2004 Feb 13;303(5660):1010-4
pubmed: 14963330
Insect Biochem Mol Biol. 2007 Jun;37(6):635-40
pubmed: 17517340
Insect Biochem Mol Biol. 2011 Aug;41(8):613-9
pubmed: 21497653
Cancer Res. 2004 Aug 1;64(15):5245-50
pubmed: 15289330
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
J Cell Sci. 2001 May;114(Pt 9):1643-53
pubmed: 11309196
Biochim Biophys Acta. 2011 Nov;1813(11):1978-86
pubmed: 21440011
BMC Genomics. 2018 May 29;19(1):413
pubmed: 29843605
Pest Manag Sci. 2012 Apr;68(4):652-7
pubmed: 22065515
Insect Sci. 2017 Apr;24(2):222-234
pubmed: 26749166
Toxicol Pathol. 2007 Jun;35(4):495-516
pubmed: 17562483
Pest Manag Sci. 2016 Sep;72(9):1710-7
pubmed: 26607310
Sci Rep. 2017 Oct 16;7(1):13231
pubmed: 29038528
Pest Manag Sci. 2014 Apr;70(4):603-9
pubmed: 23749428
Front Physiol. 2018 Apr 11;9:372
pubmed: 29695976
Clin Exp Pharmacol Physiol. 2012 Aug;39(8):674-9
pubmed: 21895736
Int J Biochem Cell Biol. 2015 Jul;64:126-35
pubmed: 25849458
Pestic Biochem Physiol. 2017 Aug;140:97-104
pubmed: 28755702
Bioorg Med Chem Lett. 2017 Feb 15;27(4):701-707
pubmed: 28073672
Nat Protoc. 2006;1(3):1559-82
pubmed: 17406449
Insect Biochem Mol Biol. 2011 Nov;41(11):909-21
pubmed: 21911060
Nature. 2000 Oct 12;407(6805):770-6
pubmed: 11048727
Environ Entomol. 2015 Apr;44(2):418-25
pubmed: 26313197
Insect Biochem Mol Biol. 2007 Jun;37(6):627-34
pubmed: 17517339
Chemosphere. 2017 Feb;169:155-161
pubmed: 27870937
Pestic Biochem Physiol. 2016 Sep;132:3-12
pubmed: 27521907
Toxicon. 2017 Apr;129:20-27
pubmed: 28153490
Nature. 1997 Sep 18;389(6648):300-5
pubmed: 9305847
Biotechnol Lett. 2004 Mar;26(6):509-15
pubmed: 15127793
Curr Top Dev Biol. 2015;114:185-208
pubmed: 26431568
Front Physiol. 2018 Feb 27;9:137
pubmed: 29535638
PLoS One. 2017 May 11;12(5):e0177572
pubmed: 28493963
Sci Rep. 2016 May 11;6:25883
pubmed: 27165720
BMC Genomics. 2010 Oct 31;11:611
pubmed: 21040523
Radiat Res. 1991 Jul;127(1):58-63
pubmed: 2068272
J Mol Endocrinol. 2002 Aug;29(1):23-39
pubmed: 12200227
BMC Mol Biol. 2006 Oct 06;7:33
pubmed: 17026756