The Impact of Lipid Corona on Rifampicin Intramacrophagic Transport Using Inhaled Solid Lipid Nanoparticles Surface-Decorated with a Mannosylated Surfactant.
active targeting
inhalation
mannosylated surfactant
pulmonary surfactant
solid lipid nanoparticles
tuberculosis
Journal
Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003
Informations de publication
Date de publication:
01 Oct 2019
01 Oct 2019
Historique:
received:
05
08
2019
revised:
24
09
2019
accepted:
27
09
2019
entrez:
5
10
2019
pubmed:
5
10
2019
medline:
5
10
2019
Statut:
epublish
Résumé
The mimicking of physiological conditions is crucial for the success of accurate in vitro studies. For inhaled nanoparticles, which are designed for being deposited on alveolar epithelium and taken up by macrophages, it is relevant to investigate the interactions with pulmonary surfactant lining alveoli. As a matter of fact, the formation of a lipid corona layer around the nanoparticles could modulate the cell internalization and the fate of the transported drugs. Based on this concept, the present research focused on the interactions between pulmonary surfactant and Solid Lipid Nanoparticle assemblies (SLNas), loaded with rifampicin, an anti-tuberculosis drug. SLNas were functionalized with a synthesized mannosylated surfactant, both alone and in a blend with sodium taurocholate, to achieve an active targeting to mannose receptors present on alveolar macrophages (AM). Physico-chemical properties of the mannosylated SLNas satisfied the requirements relative to suitable respirability, drug payload, and AM active targeting. Our studies have shown that a lipid corona is formed around SLNas in the presence of Curosurf, a commercial substitute of the natural pulmonary surfactant. The lipid corona promoted an additional resistance to the drug diffusion for SLNas functionalized with the mannosylated surfactant and this improved drug retention within SLNas before AM phagocytosis takes place. Moreover, lipid corona formation did not modify the role of nanoparticle mannosylation towards the specific receptors on MH-S cell membrane.
Identifiants
pubmed: 31581554
pii: pharmaceutics11100508
doi: 10.3390/pharmaceutics11100508
pmc: PMC6835947
pii:
doi:
Types de publication
Journal Article
Langues
eng
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Environ Sci Pollut Res Int. 2013 May;20(5):2761-70
pubmed: 23288678
Pharm Res. 2014 Feb;31(2):449-65
pubmed: 23974958
Int J Pharm. 2014 Feb 28;462(1-2):74-82
pubmed: 24374224
Eur Respir J. 1999 Jun;13(6):1455-76
pubmed: 10445627
ACS Nano. 2015 Dec 22;9(12):11872-85
pubmed: 26575243
Respir Med. 1996 May;90(5):251-70
pubmed: 9499810
Tissue Eng. 2004 May-Jun;10(5-6):865-72
pubmed: 15265304
Science. 1997 Jun 20;276(5320):1868-71
pubmed: 9188534
Exp Lung Res. 1996 Sep-Oct;22(5):495-508
pubmed: 8886755
Biol Proced Online. 2004;6:220-225
pubmed: 15472722
J Virol. 2000 Jun;74(11):5190-7
pubmed: 10799594
Inhal Toxicol. 2009 Jul;21 Suppl 1:97-103
pubmed: 19558240
Int J Pharm. 2010 May 31;391(1-2):29-37
pubmed: 20156536
Part Fibre Toxicol. 2010 Sep 11;7:25
pubmed: 20831820
Microbes Infect. 2012 Jan;14(1):17-25
pubmed: 21945366
Int J Nanomedicine. 2017 Apr 18;12:3137-3151
pubmed: 28458536
Expert Opin Drug Deliv. 2015 Jun;12(6):1009-26
pubmed: 25912721
Acta Pharm Sin B. 2016 Jul;6(4):308-18
pubmed: 27471671
Eur Respir J. 2014 Sep;44(3):765-74
pubmed: 24791828
Nanotoxicology. 2016 Nov;10(9):1351-62
pubmed: 27441789
Part Fibre Toxicol. 2017 Oct 30;14(1):42
pubmed: 29084556
Eur J Pharm Sci. 2018 Mar 1;114:103-113
pubmed: 29229273
Pharm Res. 2002 Oct;19(10):1439-45
pubmed: 12425460
Toxicol Lett. 2011 Oct 10;206(2):197-203
pubmed: 21803137
J Control Release. 2013 May 28;168(1):41-9
pubmed: 23419950
ACS Nano. 2012 Jul 24;6(7):5845-57
pubmed: 22721453
Heliyon. 2019 Apr 28;5(4):e01539
pubmed: 31183418
Pharm Res. 2005 Jan;22(1):148-52
pubmed: 15771241
Int J Nanomedicine. 2018 Jul 23;13:4303-4318
pubmed: 30087562
Int J Pharm. 2000 Apr 25;200(1):93-106
pubmed: 10845690
Nat Rev Immunol. 2014 Feb;14(2):81-93
pubmed: 24445666
Eur J Pharm Biopharm. 2011 Aug;78(3):366-76
pubmed: 21324356
Int J Biochem Cell Biol. 2016 Jun;75:162-74
pubmed: 26873405
Sci Rep. 2017 Jun 19;7(1):3827
pubmed: 28630477
Drug Dev Ind Pharm. 2010 Jan;36(1):102-7
pubmed: 19656002
Pharmaceutics. 2019 Mar 11;11(3):null
pubmed: 30861990
Part Fibre Toxicol. 2012 May 24;9:17
pubmed: 22624622
Biochim Biophys Acta Biomembr. 2017 Sep;1859(9 Pt B):1740-1748
pubmed: 28450046
Beilstein J Nanotechnol. 2015 Feb 20;6:517-28
pubmed: 25821694
Colloids Surf B Biointerfaces. 2014 Nov 1;123:143-9
pubmed: 25262409
Drug Deliv Transl Res. 2019 Feb;9(1):298-310
pubmed: 30484257
J Colloid Interface Sci. 2019 Jun 1;545:162-171
pubmed: 30877998
Eur J Pharm Biopharm. 2015 Jan;89:163-74
pubmed: 25497488
Br J Anaesth. 1990 Jul;65(1):13-29
pubmed: 2200480
Expert Opin Drug Deliv. 2015 Apr;12(4):583-99
pubmed: 25391992
Langmuir. 2015 Jul 7;31(26):7346-54
pubmed: 26075579
J Cytol Mol Biol. 2014 Jan 10;1(1):null
pubmed: 24672807
J Aerosol Med Pulm Drug Deliv. 2010 Aug;23(4):207-17
pubmed: 20109124
J Pharm Sci. 2015 Jul;104(7):2169-76
pubmed: 25931324
FEMS Microbiol Lett. 2004 Jan 15;230(1):147-52
pubmed: 14734178
J Drug Deliv. 2016;2016:8290963
pubmed: 27867663
ACS Nano. 2017 Jul 25;11(7):6832-6842
pubmed: 28541666
PLoS One. 2012;7(7):e40775
pubmed: 22802970
Int J Pharm. 2014 Jan 30;461(1-2):112-28
pubmed: 24291124
Int J Pharm. 2016 Sep 10;511(1):669-679
pubmed: 27473279
J Control Release. 2018 Dec 10;291:116-126
pubmed: 30321577
Expert Opin Drug Deliv. 2017 Apr;14(4):499-512
pubmed: 27534768
J Control Release. 1998 Feb 12;51(2-3):143-52
pubmed: 9685911
Biomacromolecules. 2011 Jul 11;12(7):2440-6
pubmed: 21657799