3D Bioprinted Human Cortical Neural Constructs Derived from Induced Pluripotent Stem Cells.
3D bioprinting
3D cultures
biofabrication
calcium imaging
cortical neurons
iPSCs
patch clamp.
Journal
Journal of clinical medicine
ISSN: 2077-0383
Titre abrégé: J Clin Med
Pays: Switzerland
ID NLM: 101606588
Informations de publication
Date de publication:
02 Oct 2019
02 Oct 2019
Historique:
received:
06
09
2019
revised:
23
09
2019
accepted:
24
09
2019
entrez:
5
10
2019
pubmed:
5
10
2019
medline:
5
10
2019
Statut:
epublish
Résumé
Bioprinting techniques use bioinks made of biocompatible non-living materials and cells to build 3D constructs in a controlled manner and with micrometric resolution. 3D bioprinted structures representative of several human tissues have been recently produced using cells derived by differentiation of induced pluripotent stem cells (iPSCs). Human iPSCs can be differentiated in a wide range of neurons and glia, providing an ideal tool for modeling the human nervous system. Here we report a neural construct generated by 3D bioprinting of cortical neurons and glial precursors derived from human iPSCs. We show that the extrusion-based printing process does not impair cell viability in the short and long term. Bioprinted cells can be further differentiated within the construct and properly express neuronal and astrocytic markers. Functional analysis of 3D bioprinted cells highlights an early stage of maturation and the establishment of early network activity behaviors. This work lays the basis for generating more complex and faithful 3D models of the human nervous systems by bioprinting neural cells derived from iPSCs.
Identifiants
pubmed: 31581732
pii: jcm8101595
doi: 10.3390/jcm8101595
pmc: PMC6832547
pii:
doi:
Types de publication
Journal Article
Langues
eng
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Dev Biol. 2016 Dec 15;420(2):199-209
pubmed: 27402594
Dis Model Mech. 2015 Jul 1;8(7):755-66
pubmed: 26035390
Nat Mater. 2016 Feb;15(2):190-6
pubmed: 26552058
ACS Biomater Sci Eng. 2019 Jan 14;5(1):234-243
pubmed: 33405866
Nature. 2013 Sep 19;501(7467):373-9
pubmed: 23995685
Biofabrication. 2018 Apr 25;10(3):035005
pubmed: 29578448
Curr Pharm Biotechnol. 2013;14(1):91-7
pubmed: 23570054
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2206-11
pubmed: 26858399
Methods Mol Biol. 2017;1612:369-380
pubmed: 28634956
Biofabrication. 2016 Jun 07;8(2):025017
pubmed: 27271208
Adv Healthc Mater. 2016 Jun;5(12):1429-38
pubmed: 27028356
Nat Protoc. 2012 Oct;7(10):1836-46
pubmed: 22976355
Sci Rep. 2017 Apr 6;7(1):658
pubmed: 28386058
Biofabrication. 2015 Oct 21;7(4):044102
pubmed: 26486521
Cell. 2018 Aug 23;174(5):1264-1276.e15
pubmed: 30057116
Biomaterials. 2019 Feb;194:1-13
pubmed: 30562651
Sci Rep. 2017 Jul 4;7(1):4566
pubmed: 28676704
Mol Neurodegener. 2018 May 22;13(1):27
pubmed: 29788997
Adv Healthc Mater. 2017 Sep;6(17):
pubmed: 28544655
Nat Rev Mol Cell Biol. 2012 Nov;13(11):713-26
pubmed: 23034453
Sci Rep. 2017 Aug 17;7(1):8499
pubmed: 28819205
Adv Funct Mater. 2018 Sep 26;28(39):
pubmed: 32595422
Biotechnol J. 2017 Dec;12(12):
pubmed: 29030959
Biomaterials. 2018 Jul;171:57-71
pubmed: 29684677
Brain Res. 2019 Nov 15;1723:146393
pubmed: 31425681