Natural Monoterpenes: Much More than Only a Scent.


Journal

Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449

Informations de publication

Date de publication:
Dec 2019
Historique:
received: 06 08 2019
accepted: 03 10 2019
pubmed: 7 10 2019
medline: 7 1 2020
entrez: 7 10 2019
Statut: ppublish

Résumé

Terpenes are a widespread group of secondary metabolites that can be found in various family plants such as the Lamiaceae. In view of their numerous valuable biological activities, the industrial production of concrete terpenes and essential oils rich in the substances is intensively studied. Monoterpenes constitute a significant part of the whole group of the aforementioned secondary metabolites. This is due to their numerous biological activities and their ability to permeate the skin. Despite the fact that these substances have gain popularity, they are not comprehensively characterized. The presented review is based on studies of the biological activities of the most important monoterpenes and the essential oils rich in these compounds. The authors focused attention on antioxidant activity, inhibition towards acetyl- and butyrylcholinesterase, and α-amylase and α-glucosidase, antifungal, hepatoprotective, sedative properties, and their skin permeation enhancement.

Identifiants

pubmed: 31587473
doi: 10.1002/cbdv.201900434
doi:

Substances chimiques

Antioxidants 0
Monoterpenes 0
NF-E2-Related Factor 2 0
Oils, Volatile 0
Cholinesterases EC 3.1.1.8

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e1900434

Informations de copyright

© 2019 Wiley-VHCA AG, Zurich, Switzerland.

Références

C. O. Da Fonseca, R. M. Teixeira, R. Ramina, G. Kovaleski, J. T. Silva, J. Nagel, T. Quirico-Santos, ‘Case of advanced recurrent glioblastomas successfully treated with monoterpene perillyl alcohol by intranasal administration’, J. Cancer Ther. 2011, 2, 16-21.
J. Penuelas, S. Munne-Bosch, ‘Isoprenoids: an evolutionary pool for photoprotection’, Trends Plant Sci. 2005, 10, 166-169.
A. Maggio, S. Rosselli, M. Bruno, ‘Essential oils and pure volatile compounds as potential drugs in Alzheimer's disease therapy: an updated review of the literature’, Curr. Pharm. Des. 2016, 22, 4011-4027.
D. Maßberg, A. Simon, D. Häussinger, V. Keitel, G. Gisselmann, H. Conrad, H. Hatt, ‘Monoterpene (−)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor’, Arch. Biochem. Biophys. 2015, 566, 100-109.
S. J. Banks, K. R. Sreenivasan, D. M. Weintraub, D. Baldock, M. Noback, M. E. Pierce, J. Frasnelli, J. James, E. Beall, X. Zhuang, D. Cordes, G. C. Leger, ‘Structural and functional MRI differences in master sommeliers: A pilot study on expertise in the brain’, Front. Hum. Neurosci. 2016, 10, 414.
M. E. Maffei, J. Gertsch, G. Appendino, ‘Plant volatiles: Production, function and pharmacology’, Nat. Prod. Rep. 2011, 28, 1359-1380.
D. Bae, H. Seol, H. G. Yoon, J. R. Na, K. Oh, C. Y. Choi, D. W. Lee, W. Jun, K. Youl Lee, J. Lee, K. Hwang, Y. H. Lee, S. Kim, ‘Inhaled essential oil from Chamaecyparis obtuse ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats’, Pharm. Biol. 2012, 50, 900-910.
N. Majlessi, S. Choopani, M. Kamalinejad, Z. Azizi, ‘Amelioration of amyloid β-induced cognitive deficits by Zataria multiflora Boiss. Essential oil in a rat model of Alzheimer's disease’, CNS Neurosci. Ther. 2012, 18, 295-301.
R. Videira, P. Castanheira, M. Grãos, L. Salgueiro, C. Faro, C. Cavaleiro, ‘A necrodane monoterpenoid from Lavandula luisieri essential oil as a cell-permeable inhibitor of BACE-1, the β-secretase in Alzheimer's disease’, Flavour Fragrance J. 2013, 28, 380-388.
O. Cioanca, L. Hritcu, M. Mihasana, M. Hancianu, ‘Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer's disease’, Physiol. Behav. 2013, 120, 193-202.
O. Cioanca, M. Hancianu, M. Mihasan, L. Hritcu, ‘Anti-acetylcholinesterase and antioxidant activities of inhaled juniper oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus’, Neurochem. Res. 2015, 40, 952-960.
R. Videira, P. Castanheira, M. Graos, R. Resende, L. Salgueiro, C. Faro, C. Cavaleiro, ‘Dose-dependent inhibition of BACE-1 by the monoterpenoid 2,3,4,4-tetramethyl-5-methylenecyclopent-2-enone in cellular and mouse models of Alzheimer's disease’, J. Nat. Prod. 2014, 77, 1275-1279.
T. Rahman, I. Hosen, M. M. T. Islam, H. U. Shekhar, ‘Oxidative stress and human health’, Adv. Biosci. Biotechnol. 2012, 3, 997-1019.
K. A. Wojtunik-Kulesza, A. Oniszczuk, T. Oniszczuk, M. Waksmundzka-Hajnos, ‘Influence of common free radicals and antioxidants on development of Alzheimer's Disease’, Biomed. Pharmacother. 2016, 78, 39-49.
S. Toyokuni, ‘Oxidative stress as an iceberg in carcinogenesis and cancer biology’, Adv. Biosci. Biotechnol. 2016, 595, 46-49.
M. Gutowski, S. Kowalczyk, ‘Study of free radical chemistry: their role and pathophysiological significance’, Acta Biochim. Pol. 2013, 60, 1-16.
B. Dimitrios, ‘of natural phenolic antioxidants’, Trends Food Sci. Technol. 2006, 17, 505-512.
I. Biskup, I. Golonka, A. Gamian, Z. Sroka, ‘Antioxidant activity of selected phenols estimated by ABTS and FRAP methods’, Postepy Hig. Med. Dosw. 2013, 67, 958-963.
R. Amorati, L. Valgimigli, ‘Advantages and limitations of common testing methods for antioxidants’, Free Radical Res. 2015, 49, 633-649.
K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. H. Byrn, ‘Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts’, J. Food Compos. Anal. 2006, 19, 669-675.
X. Li, T. He, X. Wang, M. Shen, X. Yan, S. Fan, L. Wang, X. Wang, X. Xu, H. Sui, G. She, ‘Traditional uses, chemical constituents and biological activities of plants from the genus Thymus’, Chem. Biodiversity 2019, 16, 1-33.
H. Moradkhani, E. Sargsyan, H. Bibak, B. Naseri, M. Sadat-Hosseini, A. Fayazi-Barjin, H. Meftahizade, ‘Melissa officinalis L., a valuable medicine plant: A review’, J. Med. Plants Res. 2010, 4, 2753-2759.
K. A. Wojtunik, L. M. Ciesla, M. Waksmundzka-Hajnos, ‘Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2,2-diphenyl-1-picrylhydrazyl method’, J. Agric. Food Chem. 2014, 63, 9088-9094.
M. Öztürk, ‘Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil’, Food Chem. 2012, 134, 48-54.
M. Snoussi, E. Noumi, N. Trabelsi, G. Flamini, A. Papetti, V. De Feo, ‘Mentha spicata essential oil: chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains’, Molecules 2015, 20, 14402-14424.
A. Popova, Z. Dalemska, D. Mihaylova, I. Hristova, I. Alexieva, ‘Melissa officinalis L.-GC profile and antioxidant activity’, Int. J. Pharmacogn. Phtochem. Res. 2016, 8, 634-638.
G. L. da Silva, C. Luft, A. Lunardelli, R. H. Amaral, D. A. da Silva Melo, M. V. F. Donadio, D. B. Nunes, M. S. de Azambuja, J. C. Santana, C. M. B. Moraes, R. O. Ricardo, O. Mello, E. Cassel, M. A. de Almeida Pereira, J. R. de Oliveira, ‘Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil’, An. Acad. Bras. Cienc. 2015, 87, 1397-1408.
A. Duarte, A. Luís, M. Oleastro, F. C. Domingues, ‘Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp.’, Food Control 2016, 61, 115-122.
G. H. Seol, P. Kang, H. S. Lee, G. H. Seol, ‘Antioxidant activity of linalool in patients with carpal tunnel syndrome’, BMC Neurol. 2016, 16, 1-6.
A. C. Aprotosoaie, M. Hăncianu, I. I. Costacheb, A. Miron, ‘Linalool: a review on a key odorant molecule with valuable biological properties’, Flavour Fragrance J. 2014, 29, 193-219.
M. Mohammadhosseini, A. Akbarzadeh, G. Flamini, ‘Profiling of compositions of essential oils and volatiles of Salvia limbata using traditional and advanced techniques and evaluation for biological activities of their extracts’, Chem. Biodiversity 2017, 14, 1-19.
M. Porres-Martínez, E. González-Burgos, M. E. Carretero, M. P. Gómez-Serranillos, ‘Major selected monoterpenes α-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish age) essential oil as regulators of cellular redox balance’, Pharm. Biol. 2015, 53, 921-929.
H. P. Singh, D. R. Batish, S. Kaur, K. Arora, R. K. Kohli, ‘α-Pinene inhibits growth and induces oxidative stress in roots’, Ann. Bot. 2006, 98, 1261-1269.
N. Chowhan, A. S. Bali, H. P. Singh, D. R. Batish, R. K. Kohli, ‘Reactive oxygen species generation and antioxidant defense system in hydroponically grown wheat (Triticum aestivum) upon β-pinene exposure: an early time course assessment’, Acta Physiol. Plant. 2014, 36, 3137-3146.
A. Wei, T. Shibamoto, ‘Antioxidant activities and volatile constituents of various essential oils’, J. Agric. Food Chem. 2007, 55, 1737-1742.
W. Wang, N. Wu, Y. G. Zu, Y. J. Fu, ‘Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components’, Food Chem. 2008, 108, 1019-1022.
J. Rudbäck, M. Andresen Bergström, A. Börje, U. Nilsson, A. T. Karlberg, ‘α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure’, Chem. Res. Toxicol. 2012, 25, 713-721.
G. X. Li, Z. Q. Liu, ‘Unusual antioxidant behavior of α- and γ-terpinene in protecting methyl linoleate, DNA, and erythrocyte’, J. Agric. Food Chem. 2009, 57, 3943-3948.
M. C. Foti, K. U. Inglod, ‘Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant’, J. Agric. Food Chem. 2003, 51, 2758-2765.
T. M. de Oliveira, R. B. F. de Carvalho, I. H. F. da Costa, G. A. L. de Oliveira, A. A. de Souza, S. G. de Lima, R. M. de Freitas, ‘Evaluation of p-cymene, a natural antioxidant’, Pharm. Biol. 2015, 53, 423-428.
A. Sonboli, P. Salehi, M. R. Kanani, S. N. Ebrahimi, ‘Antibacterial and antioxidant activity and essential oil composition of Grammosciadium scabridum Boiss. from Iran’, Z. Naturforsch. C 2005, 60, 534-538.
M. Elmastas, I. Dermirtas, O. Isildak, ‘Antioxidant activity of S-carvone isolated from spearmint (Mentha Spicata L. Fam Lamiaceae)’, J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1465-1475.
S. M. Sabir, D. Singh, J. B. T. Rocha, ‘In vitro antioxidant activity of S-carvone isolated from Zanhoxylum alatum’, Pharm. Chem. J. 2015, 49, 187-191.
L. M. Ciesla, K. A. Wojtunik-Kulesza, A. Oniszczuk, M. Waksmundzka-Hajnos, ‘Antioxidant synergism and antagonism between selected monoterpenes using the 2,2-diphenyl-1-picrylhydrazyl method’, Flavour Fragrance J. 2016, 31, 412-419.
S. Noori, ‘An overview of oxidative stress and antioxidant defensive system’, J. Clin. Cell. Immunol. 2012, 1, 1-9.
H. Si, D. Liu, ‘Dietary antiaging phytochemicals and mechanisms associated with prolonged survival’, J. Nutr. Biochem. 2014, 25, 581-591.
Q. Wu, L. Yu, J. Qiu, B. Shen, D. Wang, L. W. Soromou, H. Feng, ‘Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway’, Int. Immunopharmacol. 2014, 21, 456-463.
M. Jayachandran, B. Chandrasekaran, N. Namasivayam, ‘Geraniol attenuates oxidative stress by Nrf2 activation in diet-induced experimental atherosclerosis’, J. Basic Clin. Physiol. Pharmacol. 2015, 26, 335-346.
M. Porres-Martínez, E. González-Burgos, M. E. Carretero, M. P. Gómez-Serranillos, ‘In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells’, Z. Naturforsch. 2016, 71, 191-199.
M. Tiwari, P. Kakkar, ‘Plant derived antioxidants-Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress’, Toxicol. Vitro 2009, 23, 295-301.
P. Wang, Q. Luo, H. Qiao, H. Ding, Y. Cao, J. Yu, R. Liu, Q. Zhang, H. Zhu, L. Qu, ‘The neuroprotective effects of carvacrol on ethanol-induced hippocampal neurons impairment via the antioxidative and antiapoptotic pathways’, Oxid. Med. Cell. Longevity 2017, 2017, 1-17.
L. H. Babu, S. Perumal, M. P. Balasubramanian, ‘Myrtenal attenuates diethylnitrosamine-induced hepatocellular carcinoma in rats by stabilizing intrinsic antioxidants and modulating apoptotic and anti-apoptotic cascades’, Cell. Oncol. 2012, 35, 269-283.
L. F. Pires, L. M. Costa, A. A. C. de Almeida, O. A. Silva, G. S. Cerqueira, D. P. de Sousa, R. M. de Freitas, ‘Is there a correlation between in vitro antioxidant potential and in vivo effect of carvacryl acetate against oxidative stress in mice hippocampus?’, Neurochem. Res. 2014, 39, 758-769.
D. E. Kuhl, R. A. Koeppe, S. E. Snyder, S. Minoshima, K. A. Frey, M. R. Kilbourn, ‘In vivo butyrylcholinesterase activity is not increased in Alzheimer's disease synapses’, Ann. Neurol. 2006, 59, 13-20.
K. Iqbal, I. Grundke-Iqbal, ‘Alzheimer's disease, a multifactorial disorder seeking multitherapies’, Alzheimer′s Dementia 2010, 6, 420-424.
P. K. Mukherjee, V. Kumar, M. Mal, P. J. Houghton, ‘Acetylcholinesterase inhibitors from plants’, Phytomedicine 2007, 14, 289-300.
I. Orhan, M. Kartal, Q. Naz, A. Ejaz, G. Yilmaz, Y. Kan, B. Konuklugil, B. Sener, M. I. Choudhary, ‘Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species’, Food Chem. 2007, 103, 1247-1254.
A. Marston, J. Kissling, K. Hostettmann, ‘A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants’, Phytochem. Anal. 2002, 13, 51-54.
G. L. Ellman, K. D. Courtney, V. Andres, R. M. Featherstone, ‘A new and rapid colorimetric determination of acetylcholinesterase activity’, Biochem. Pharmacol. 1961, 7, 88-95.
R. Tundis, M. Bonesi, A. Pugliese, F. Nadjafi, F. Menichini, M. R. Loizzo, ‘Tyrosinase, acetyl- and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents’, Rec. Nat. Prod. 2015, 9, 81-93.
M. Bonesi, F. Menichini, R. Tundis, M. R. Loizzo, F. Conforti, N. G. Passalacqua, G. A. Statti, F. Menichini, ‘Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents’, J. Enzyme Inhib. Med. Chem. 2010, 25, 622-628.
F. Menichini, R. Tundis, M. R. Loizzo, M. Bonesi, M. Marrelli, G. A. Statti, F. Menichini, F. Conforti, ‘Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae)’, Fitoterapia 2009, 80, 297-300.
C. Mills, B. J. Cleary, J. F. Gilmer, J. J. Walsh, ‘Inhibition of acetylcholinesterase by tea tree oil’, J. Pharm. Pharmacol. 2004, 56, 375-379.
I. Orhan, S. Aslan, M. Kartal, B. Şener, K. Hüsnü Can Başer, ‘Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes’, Food Chem. 2008, 108, 663-668.
H. E. Temel, B. Demirci, F. Demirci, F. Celep, A. Kahraman, M. Doğan, K. Hüsnü Can Başer, ‘Chemical characterization and anticholinesterase effects of essential oils derived from Salvia species’, J. Essent. Oil Res. 2016, 28, 322-331.
C. Sarikurkcu, M. C. Uren, M. S. Kocak, M. Cengiz, B. Tepe, ‘Chemical composition, antioxidant, and enzyme inhibitory activities of the essential oils of three Phlomis species as well as their fatty acid compositions’, Food Sci. Biotechnol. 2016, 25, 687-693.
H. J. Yeom, J. S. Kang, G. H. Kim, I. K. Park, ‘Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica)’, J. Agric. Food Chem. 2012, 60, 7194-7203.
S. Savelev, E. Okelloa, N. S. L. Perryb, R. M. Wilkinsa, E. K. Perry, ‘Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulifolia essential oil’, Pharmacol. Biochem. Behav. 2003, 75, 661-668.
D. Kaufmann, A. K. Dogra, M. Wink, ‘Myrtenal inhibits acetylcholinesterase, a known Alzheimer target’, J. Pharm. Pharmacol. 2011, 63, 1368-1371.
M. D. López, M. J. Pascual-Villalobos, ‘Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control’, Ind. Crops Prod. 2010, 31, 284-288.
H. W. Chen, X. H. He, R. Yuan, B. J. Wei, Z. C. Jun, X. Dong, J. Wang, ‘Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo’, Fitoterapia 2016, 110, 142-149.
H. H. Ahmed, H. F. Booles, W. K. B. Khalil, H. M. El Ashmaoui, S. M. Othman, ‘Possible therapeutic role of Jasonia Candicans and Jasonia Montana extracts in the regression of Alzheimer's Disease in experimental model’, Am. J. Biochem. Biotechnol. 2013, 9, 144-161.
N. S. L. Perry, C. Bollen, E. K. Perry, C. Ballard, ‘Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial’, Pharmacol. Biochem. Behav. 2003, 75, 651-659.
J. L. Ríos, F. Francini, G. R. Schinella, ‘Natural products for the treatment of type 2 diabetes mellitus’, Planta Med. 2015, 81, 975-994.
R. Subramanian, M. Z. Asmawi, A. Sadikun, ‘In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide’, Acta Biochim. Pol. 2008, 55, 391-398.
S. S. Nair, V. Kavrekar, A. Mishra, ‘In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts’, Eur. J. Exp. Biol. 2013, 3, 128-132.
M. I. Kazeem, J. O. Adamson, I. A. Ogunwande, ‘Modes of Inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf’, BioMed Res. Int. 2013, 2013, 1-6.
Z. Yin, W. Zhang, F. Feng, Y. Zhang, W. Kang, ‘α-Glucosidase inhibitors isolated from medicinal plants’, Food Sci. Human Well. 2014, 3, 136-174.
E. Di Stefano, T. Oliviero, C. C. Udenigwe, ‘Functional significance and structure-activity relationship of food-derived α-glucosidase inhibitors’, Curr. Opin. Food Sci. 2018, 20, 7-12.
K. Majouli, M. B. Hlila, A. Hamdi, G. Flamini, H. B. Jannet, A. Kenani, ‘Antioxidant activity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.)’, Ind. Crops Prod. 2016, 82, 23-28.
G. Zengin, C. Sarıkürkçü, A. Aktümsek, R. Ceylan, ‘Antioxidant potential and inhibition of key enzymes linked to Alzheimer's diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. Endemic to Turkey’, Rec. Nat. Prod. 2016, 10, 195-206.
L. Jelenković, V. S. Jovanović, I. Palić, V. Mitić, M. Radulović, ‘In vitro screening of α-amylase inhibition by selected terpenes from essential oils’, Trop. J. Pharm. Res. 2014, 13, 1421-1428.
X. C. Tan, K. H. Chua, M. Ravishankar Ram, U. R. Kuppusamy, ‘Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes’, Food Chem. 2016, 196, 242-250.
Z. W. Wang, J. S. Wang, J. Luo, L. Y. Kong, ‘α-Glucosidase inhibitory triterpenoids from the stem barks of Uncaria laevigata’, Fitoterapia 2013, 90, 30-37.
M. Malmir, A. R. Gohari, S. Saeidnia, O. Silva, ‘A new bioactive monoterpene-flavonoid from Satureja khuzistanica’, Fitoterapia 2015, 105, 107-112.
B. Jabeen, N. Riaz, M. Saleem, M. A. Naveed, M. Ashraf, U. Alam, H. M. Rafiq, R. B. Tareen, A. Jabbar, ‘Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity’, Phytochemistry 2013, 96, 443-448.
S. Ogawa, K. Hosoi, N. Ikeda, M. Makino, Y. Fujimoto, T. Iida, ‘Oxyfunctionalization products of terpenoids with dimethyldioxirane and their biological activity’, Chem. Pharm. Bull. 2007, 55, 247-250.
G. D. Anaya-Eugenio, I. Rivero-Cruz, J. Rivera-Chávez, R. Mata, ‘Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt’, J. Ethnopharmacol. 2014, 155, 416-425.
K. Wang, L. Bao, K. Ma, J. Zhang, B. Chen, J. Han, J. Ren, H. Luo, H. Liu, ‘A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK−Ay mice’, Eur. J. Med. Chem. 2017, 127, 1035-1046.
M. J. Chung, S. Y. Cho, M. J. H. Bhuiyan, K. H. Kim, S. J. Lee, ‘Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice’, Br. J. Nutr. 2010, 104, 180-188.
A. Kumar, V. B. Kudachikar, ‘Antifungal properties of essential oils against anthracnose disease: a critical appraisal’, J. Plant. Dis. Prot. 2018, 125, 133-144.
L. Jing, Z. Lei, L. Li, R. Xie, W. Xi, Y. Guan, L. W. Sumner, Z. Zhou, ‘Antifungal activity of citrus essential oils’, J. Agric. Food Chem. 2014, 62, 3011-3033.
K. Bazaka, M. V. Jacob, W. Chrzanowski, K. Ostrikov, ‘Antibacterial surfaces: natural agents, mechanisms of action, and plasma surface modification’, RSC Adv. 2015, 5, 48739-48759.
S. Garzoli, M. Božović, A. Baldisserotto, M. Sabatino, S. Cesa, F. Pepi, C. B. Vicentini, S. Manfredini, R. Ragno, ‘Essential oil extraction, chemical analysis and anti-Candida activity of Foeniculum vulgare Miller-new approaches’, Nat. Prod. Res. 2018, 32, 1254-1259.
D. F. Silva, A. C. L. Silva, H. Diniz-Neto, H. M. B. F. Oliveira, C. I. S. Medeiros, J. A. Pereira, J. P. Sousa, A. A. Oliveira-Filho, E. O. Lima, ‘Activity anti-candida albicans and effects of the association of β-citronellol with three antifungal azolics’, Lat. Am. J. Pharm. 2018, 37, 2018 182-188.
A. C. de Macêdo Andrade, P. L. Rosalen, I. A. Freires, L. Scotti, M. T. Scotti, S. G. Aquino, R. D. de Castro, ‘Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp.’, Curr. Top. Med. Chem. 2018, 18, 2481-2490.
C. R. Rivera-Yañez, L. I. Terrazas, M. Jimenez-Estrada, J. E. Campos, C. M. Flores-Ortiz, L. B. Hernandez, T. Cruz-Sanchez, G. I. Garrido-Fariña, M. A. Rodriguez-Monroy, M. M. Canales-Martinez, ‘Anti-candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene-an in vitro study’, Molecules 2017, 22, 2095.
P. M. Quatrin, C. M. Verdi, M. E. de Souza, S. N. de Godoi, B. Klein, A. Gundel, R. Wagner, R. de Almeida Vaucher, A. F. Ourique, R. C. V. Santos, ‘Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp.’, Microb. Pathog. 2017, 112, 230-242.
G. Máté, D. Kovács, Z. Gazdag, M. Pesti, Á. Szántó, ‘Linalool-induced oxidative stress processes in the human pathogen Candida albicans’, Acta Biol. Hung. 2017, 68, 220-231.
J. Tian, Z. Lu, Y. Wang, M. Zhang, X. Wang, X. Tang, X. Peng, H. Zeng, ‘Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans’, Int. J. Biochem. Cell Biol. 2017, 85, 114-122.
L. R. Peixoto, P. L. Rosalen, G. L. Ferreira, I. A. Freires, F. G. de Carvalho, L. R. Castellano, R. D. de Castro, ‘Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.’, Arch. Oral Biol. 2017, 73, 179-185.
J. Chaillot, F. Tebbji, A. Remmal, C. Boone, G. W. Brown, M. Bellaoui, A. Sellam, ‘The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans’, Antimicrob. Agents Chemother. 2015, 59, 4584-4592.
M. Mancuso, M. Catalfamo, P. Laganà, A. C. Rappazzo, V. Raymo, D. Zampino, R. Zaccone, ‘Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and Candida strains’, Flavour Fragrance J. 2019, 34, 187-200.
C. Armijos, E. Valarezo, L. Cartuche, T. Zaragoza, P. V. Finzi, G. G. Mellerio, G. Vidari, ‘Chemical composition and antimicrobial activity of Myrcianthes fragrans essential oil, a natural aromatizer of the traditional Ecuadorian beverage colada morada’, J. Ethnopharmacol. 2018, 225, 319-326.
S. Lasram, H. Zemni, Z. Hamdi, S. Chenenaoui, H. Houissa, M. S. Tounsi, A. Ghorbel, ‘Antifungal and antiaflatoxinogenic activities of Carum carvi L., Coriandrum sativum L. seed essential oils and their major terpene component against Aspergillus flavus’, Ind. Crops Prod. 2019, 134, 11-18.
P. An, X. Yang, J. Yu, J. Qi, X. Ren, Q. Kong, ‘α-Terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus’, Food Control 2019, 98, 42-53.
M. Khoury, M. El Beyrouthy, N. Ouaini, V. Eparvier, D. Stien, ‘Hirtellina lobelii DC. essential oil, its constituents, its combination with antimicrobial drugs and its mode of action’, Fitoterapia 2019, 133, 130-136.
X. Tang, Y. L. Shao, Y. J. Tang, W. W. Zhou, ‘Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus)’, Molecules 2018, 23, 2108.
J. V. Gómez, A. Tarazona, R. Mateo-Castro, J. V. Gimeno-Adelantado, M. Jiménez, E. M. Mateo, ‘Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food’, Food Addit. Contam., Part A 2018, 35, 1581-1595.
A. C. do Prado, H. G. Garces, E. Bagagli, V. L. M. Rall, A. Furlanetto, A. Fernandes Jr., F. B. Furtado, ‘Schinus molle essential oil as a potential source of bioactive compounds: antifungal and antibacterial properties’, J. Appl. Microbiol. 2019, 126, 516-522.
A. P. C. Teixeira, R. O. Nóbrega, E. O. Lima, W. O. Araújo, I. O. Lima, ‘Antifungal activity study of the monoterpene thymol against Cryptococcus neoformans’, Nat. Prod. Res. 2018, 2018, 1-4.
R. O. Nóbrega, A. P. Teixeira, W. A. Oliveira, E. O. Lima, I. O. Lima, ‘Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans’, Pharm. Biol. 2016, 54, 2591-2596.
C. Cavaleiro, L. Salgueiro, M. J. Gonçalves, K. Hrimpeng, J. Pinto, E. Pinto, ‘Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species’, J. Nat. Med. 2015, 69, 241-248.
A. Bouzabata, C. Cabral, M. J. Gonçalves, M. T. Cruz, A. Bighelli, C. Cavaleiro, J. Casanova, F. Tomi, L. Salgueiro, ‘Myrtus communis L. as source of a bioactive and safe essential oil’, Food Chem. Toxicol. 2015, 75, 166-172.
C. Girish, S. C. Pradhan, Chapter 44-Herbal Drugs on the Liver, in ‘Liver Pathophysiology Therapies and Antioxidants’, Ed. P. Muriel, Academic Press, Mexico, 2017, pp. 605-620.
I. Dib, F. E. El Alaoui-Faris, ‘Artemisia campestris L.: review on taxonomical aspects, cytogeography, biological activities and bioactive compounds’, Biomed. Pharmacother. 2019, 109, 1884-1906.
B. Tepe, A. Cakir, A. S. Tepe, ‘Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A Review’, Chem. Biodiversity 2016, 13, 504-520.
M. Uyanoglu, M. Canbek, E. Aral, K. H. C. Baser, ‘Effects of carvacrol upon the liver of rats undergoing partial hepatectomy’, Phytomedicine 2008, 15, 226-229.
M. Canbek, M. Uyanoglu, S. Canbek, E. Ceyhan, A. Ozen, B. Durmus, O. Turgak, ‘The effect of geraniol on liver regeneration after hepatectomy in rats’, In Vivo 2017, 31, 209-213.
A. Rašković, I. Milanović, N. Pavlović, T. Ćebović, S. Vukmirović, M. Mikov, ‘Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential’, BMC Complementary Altern. Med. 2014, 14, 225.
M. Hirai, M. Ito, ‘Sedative effects of the essential oil and headspace air of Ocimum basilicum by inhalation in mice’, J. Nat. Med. 2019, 73, 283-288.
L. Blackburn, S. Achor, B. Allen, N. Bauchmire, D. Dunnington, R. B. Klisovic, S. J. Naber, K. Roblee, A. Samczak, K. Tomlinson-Pinkham, E. Chipps, ‘The effect of aromatherapy on insomnia and other common symptoms among patients with acute leukemia’, Oncol. Nurs. Forum 2017, 44, 185-193.
M. Lee, S. Lim, J. A. Song, M. E. Kim, M. H. Hur, ‘The effects of aromatherapy essential oil inhalation on stress, sleep quality and immunity in healthy adults: Randomized controlled trial’, Eur. J. Integr. Med. 2017, 12, 79-86.
S. Miraj, Rafieian-Kopaei, S. Kiani, ‘Melissa officinalis L: A review study with an antioxidant prospective’, J. Evid.-Based Complement. Altern. Med. 2017, 22, 385-394.
B. Adorjan, G. Buchbauer, ‘Biological properties of essential oils: an updated review’, Flavour Fragrance J. 2010, 25, 407-426.
A. C. Williams, B. W. Barry, ‘Penetration enhancers’, Adv. Drug Delivery Rev. 2004, 56, 603-618.
J. Chen, Q. D. Jiang, Y. P. Chai, H. Zhang, P. Peng, X. X. Yang, ‘Natural terpenes as penetration enhancers for transdermal drug delivery’, Molecules 2016, 21, 1709.
E. Kahraman, N. Neşetoğlu, S. Güngör, D. Ş. Ünal, Y. Özsoy, ‘The combination of nanomicelles with terpenes for enhancement of skin drug delivery’, Int. J. Pharm. 2018, 551, 133-140.
W. Rangsimawong, Y. Obata, P. Opanasopit, T. Ngawhirunpat, K. Takayama, ‘Enhancement of galantamine HBr skin permeation using sonophoresis and limonene-containing PEGylated liposomes’, AAPS PharmSciTech 2018, 19, 1093-1104.
L. Nan, C. Liu, Q. Li, X. Wan, J. Guob, P. Quana, L. Fang, ‘Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin’, Eur. J. Pharm. Sci. 2018, 124, 105-113.
A. Ahad, M. Aqil, A. Ali, ‘The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: Enhancement and mechanistic investigation’, Pharm. Biol. 2016, 54, 1042-1051.
X. Liu, M. Liu, C. Liu, P. Quan, Y. Zhao, L. Fang, ‘An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin’, Int. J. Pharm. 2017, 529, 161-167.
T. Subongkot, P. Opanasopit, T. Rojanarata, Tanasait Ngawhirunpat, ‘Effect of limonene and 1,8-cineole on the skin penetration of fluorescein sodium deformable liposomes’, Adv. Mater. Res. 2012, 506, 449-452.
B. Yang, S. Du, Y. Lu, S. Jia, M. Zhao, J. Bai, P. Li, H. Wu, ‘Influence of paeoniflorin and menthol on puerarin transport across MDCK and MDCK-MDR1 cells as blood-brain barrier in vitro model’, J. Pharm. Pharmacol. 2018, 70, 349-360.
H. Feng, J. Luo, W. Kong, X. Dou, Y. Wang, X. Zhao, W. Zhang, Q. Lia, M. Yang, ‘Enhancement effect of essential oils from the fruits and leaves of Alpinia oxyphylla on skin permeation and deposition of indomethacin’, RSC Adv. 2015, 5, 38910-38917.

Auteurs

Karolina A Wojtunik-Kulesza (KA)

Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland.

Kamila Kasprzak (K)

Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland.

Tomasz Oniszczuk (T)

Department of Food Process Engineering, Lublin University of Life Sciences, 44 Doświadczalna Street, 20-236, Lublin, Poland.

Anna Oniszczuk (A)

Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4 A. Chodźki Street, 20-093, Lublin, Poland.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH