Porogens and porogen selection in the preparation of porous polymer monoliths.
polymer monoliths
porogen optimization
porogen selection
porogens
Journal
Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554
Informations de publication
Date de publication:
Jan 2020
Jan 2020
Historique:
received:
28
08
2019
revised:
26
09
2019
accepted:
29
09
2019
pubmed:
8
10
2019
medline:
8
10
2019
entrez:
8
10
2019
Statut:
ppublish
Résumé
Porogens are key components required for the preparation of porous polymer monoliths for application in separation science. Porogens determine the stability, selectivity, and permeability of polymer monoliths. This review summarizes the role of porogens in the preparation of porous polymer monoliths with a focus on clear understanding of effect of porogens on morphological properties, porosity, surface area, mechanical stability, and permeability of monoliths, particularly targeting the field of separation science. This review also includes the use of different types of porogens with the focus on various approaches used to set criteria for their systematic selection, including porogen-free techniques recently used for synthesis of porous monoliths. It discusses the current state-of-the-art applications of porogens in column preparation as well as where the future developments in this field may be directed.
Identifiants
pubmed: 31589375
doi: 10.1002/jssc.201900876
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
56-69Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Ikegami, T., Tanaka, N., Recent progress of monolithic silica columns for high-speed and high-selectivity separations. Annu. Rev. Anal. Chem. 2016, 9, 317-342.
Arrua, R. D., Talebi, M., Causon, T. J., Hilder, E. F., Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal. Chim. Acta 2012, 738, 1-12.
Svec, F., Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J. Chromatogr. A 2012, 1228, 250-262.
Li, Z., Rodriguez, E., Azaria, S., Pekarek, A., Hage, D. S., Affinity monolith chromatography: a review of general principles and applications. Electrophoresis 2017, 38, 2837-2850.
Acquah, C., Moy, C. K. S., Danquah, M. K., Ongkudon, C. M., Development and characteristics of polymer monoliths for advanced LC bioscreening applications: a review. J. Chromatogr. B 2016, 1015-1016, 121-134.
Svec, F., Tennikova, T. B., Deyl, Z., Monolithic Materials: Preparation, properties and applications, Elsevier, Amsterdam, Netherlands 2003.
Guiochon, G., Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 2007, 1168, 101-168.
Jacoby, M., Monolithic chromatography. Chem. Eng. News 2006, 84, 14-19.
Svec, F., Frechet, J. M. J., Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem. 1992, 64, 820-822.
Zhu, T., Row, K. H., Preparation and applications of hybrid organic-inorganic monoliths: a review. J. Sep. Sci. 2012, 35, 1294-1302.
Choudhury, S., Connolly, D., White, B., Supermacroporous polyHIPE and cryogel monolithic materials as stationary phases in separation science: a review. Anal. Methods 2015, 7, 6967-6982.
Jandera, P., Advances in the development of organic polymer monolithic columns and their applications in food analysis-a review. J. Chromatogr. A 2013, 1313, 37-53.
Svec, F., Lv, Y., Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 2015, 87, 250-273.
Urban, J., Current trends in the development of porous polymer monoliths for the separation of small molecules. J. Sep. Sci. 2016, 39, 51-68.
Masini, J. C., Svec, F., Porous monoliths for on-line sample preparation: a review. Anal. Chim. Acta 2017, 964, 24-44.
Lynch, K. B., Ren, J., Beckner, M. A., He, C., Liu, S., Monolith columns for liquid chromatographic separations of intact proteins: a review of recent advances and applications. Anal. Chim. Acta 2019, 1046, 48-68.
Zhong, J., Hao, M., Li, R., Bai, L., Yang, G., Preparation and characterization of poly(triallyl isocyanurate-co-trimethylolpropane triacrylate) monolith and its applications in the separation of small molecules by liquid chromatography. J. Chromatogr. A 2014, 1333, 79-86.
Wang, J., Jiang, X., Zhang, H., Liu, S., Bai, L., Liu, H., Preparation of a porous polymer monolithic column with an ionic liquid as a porogen and its applications for the separation of small molecules in high performance liquid chromatography. Anal. Methods 2015, 7, 7879-7888.
Svec, F., Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A 2010, 1217, 902-924.
Liu, K., Tolley, H. D., Lawson, J. S., Lee, M. L., Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules. J. Chromatogr. A 2013, 1321, 80-87.
Mohamed, M. H., Wilson, L. D., Porous copolymer resins: tuning pore structure and surface area with non reactive porogens. Nanomaterials 2012, 2, 163-186.
Li, Y., Tolley, H. D., Lee, M. L., Poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] monolithic column for efficient hydrophobic interaction chromatography of proteins. Anal. Chem. 2009, 81, 9416-9424.
Wang, X., Lin, X., Xie, Z., Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes. Electrophoresis 2009, 30, 2702-2710.
Du, K.-F., Yang, D., Sun, Y., Fabrication of high-permeability and high-capacity monolith for protein chromatography. J. Chromatogr. A 2007, 1163, 212-218.
Cooper, A. I., Holmes, A. B., Synthesis of molded monolithic porous polymers using supercritical carbon dioxide as the porogenic solvent. Adv. Mater. 1999, 11, 1270-1274.
Hebb, A. K., Senoo, K., Cooper, A. I., Synthesis of porous cross-linked polymer monoliths using 1,1,1,2-tetrafluoroethane (R134a) as the porogen. Compos. Sci. Technol. 2003, 63, 2379-2387.
Danquah, M. K., Forde, G. M., Preparation of macroporous methacrylate monolithic material with convective flow properties for bioseparation: investigating the kinetics of pore formation and hydrodynamic performance. Chem. Eng. J. 2008, 140, 593-599.
Liu, Z., Peng, Y., Wang, T., Yuan, G., Zhang, Q., Guo, J., Jiang, Z., Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography. J. Sep. Sci. 2013, 36, 262-269.
Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken, NJ 2009.
Urban, J., Jandera, P., Langmaier, P., Effects of functional monomers on retention behavior of small and large molecules in monolithic capillary columns at isocratic and gradient conditions. J. Sep. Sci. 2011, 34, 2054-2062.
Gu, C., He, J., Jia, J., Fang, N., Simmons, R., Shamsi, S. A., Surfactant-bound monolithic columns for separation of proteins in capillary high performance liquid chromatography. J. Chromatogr. A 2010, 1217, 530-539.
Li, Y., Gu, B., Tolley, H. D., Lee, M. L., Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins. J. Chromatogr. A 2009, 1216, 5525-5532.
Santora, B. P., Gagné, M. R., Moloy, K. G., Radu, N. S., Porogen and cross-linking effects on the surface area, pore volume distribution, and morphology of macroporous polymers obtained by bulk polymerization. Macromolecules 2001, 34, 658-661.
Zhong, H., El Rassi, Z., Neutral polar methacrylate-based monoliths for normal phase nano-LC and CEC of polar species including N-glycans. J. Sep. Sci. 2009, 32, 10-20.
Koeck, R., Fischnaller, M., Bakry, R., Tessadri, R., Bonn, G. K., Preparation and evaluation of monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of small molecules. Anal. Bioanal. Chem. 2014, 406, 5897-5907.
Talebi, M., Arrua, R. D., Gaspar, A., Lacher, N. A., Wang, Q., Haddad, P. R., Hilder, E. F., Epoxy-based monoliths for capillary liquid chromatography of small and large molecules. Anal. Bioanal. Chem. 2013, 405, 2233-2244.
Bai, L., Wang, J., Zhang, H., Liu, S., Qin, J., Liu, H., Ionic liquid as porogen in the preparation of a polymer-based monolith for the separation of protein by high performance liquid chromatography. Anal. Methods 2015, 7, 607-613.
Aggarwal, P., Lawson, J. S., Tolley, H. D., Lee, M. L., High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules. J. Chromatogr. A 2014, 1364, 96-106.
Aoki, H., Kubo, T., Ikegami, T., Tanaka, N., Hosoya, K., Tokuda, D., Ishizuka, N., Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen. J. Chromatogr. A 2006, 1119, 66-79.
Courtois, J., Byström, E., Irgum, K., Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 2006, 47, 2603-2611.
Wang, Q. C., Hosoya, K., Svec, F., Frechet, J. M. J., Polymeric porogens used in the preparation of novel monodispersed macroporous polymeric separation media for high-performance liquid chromatography. Anal. Chem. 1992, 64, 1232-1238.
Mansour, F. R., Zhou, L., Danielson, N. D., Applications of poly(ethylene)glycol (PEG) in separation science. Chromatographia 2015, 78, 1427-1442.
Desire, C. T., Arrua, R. D., Talebi, M., Lacher, N. A., Hilder, E. F., Poly(ethylene glycol)-based monolithic capillary columns for hydrophobic interaction chromatography of immunoglobulin G subclasses and variants. J. Sep. Sci. 2013, 36, 2782-2792.
Macintyre, F. S., Sherrington, D. C., Control of porous morphology in suspension polymerized poly(divinylbenzene) resins using oligomeric porogens. Macromolecules 2004, 37, 7628-7636.
Palm, A., Novotny, M. V., Macroporous Polyacrylamide/Poly(ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography. Anal. Chem. 1997, 69, 4499-4507.
Petro, M., Svec, F., Fréchet, J. M. J., Monodisperse hydrolyzed poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads as a stationary phase for normal-phase HPLC. Anal. Chem. 1997, 69, 3131-3139.
Peters, E. C., Petro, M., Svec, F., Fréchet, J. M. J., Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Anal. Chem. 1998, 70, 2288-2295.
Svec, F., Peters, E. C., Sýkora, D., Fréchet, J. M. J., Design of the monolithic polymers used in capillary electrochromatography columns. J. Chromatogr. A 2000, 887, 3-29.
Zhou, X.-F., Yu, C.-Z., Tang, J.-W., Yan, X.-X., Zhao, D.-Y., The effect of water content on the preparation of mesoporous monoliths and films. Microporous Mesoporous Mater. 2005, 79, 283-289.
Nakanishi, K., Nagakane, T., Soga, N., Designing double pore structure in alkoxy-derived silica incorporated with nonionic surfactant. J. Porous Mater. 1998, 5, 103-110.
Kornyšova, O., Maruška, A., Owens, P. K., Erickson, M., Non-particulate (continuous bed or monolithic) acrylate-based capillary columns for reversed-phase liquid chromatography and electrochromatography. J. Chromatogr. A 2005, 1071, 171-178.
Li, Y., Tolley, H. D., Lee, M. L., Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides. Anal. Chem. 2009, 81, 4406-4413.
Viklund, C., Svec, F., Fréchet, J. M. J., Irgum, K., Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem. Mater. 1996, 8, 744-750.
Li, Y., Tolley, H. D., Lee, M. L., Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules. J. Chromatogr. A 2011, 1218, 1399-1408.
Jose, A. J., Ogawa, S., Bradley, M., Tuning the pore size and surface area of monodisperse poly(methyl acrylate) beads via parallel seeded polymerisation. Polymer 2005, 46, 2880-2888.
Sáfrány, Á., Beiler, B., László, K., Svec, F., Control of pore formation in macroporous polymers synthesized by single-step γ-radiation-initiated polymerization and cross-linking. Polymer 2005, 46, 2862-2871.
Li, Y., Qi, L., Li, N., Ma, H., Emulsion-cryogelation technique for fabricating a versatile toolbox of hierarchical polymeric monolith and its application in chromatography. Talanta 2016, 152, 244-250.
Cingolani, A., Baur, D., Caimi, S., Storti, G., Morbidelli, M., Preparation of perfusive chromatographic materials via shear-induced reactive gelation. J. Chromatogr. A 2018, 1538, 25-33.
Khodabandeh, A., Arrua, R. D., Mansour, F. R., Thickett, S. C., Hilder, E. F., PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci. Rep. 2017, 7, 7847.
Hemström, P., Nordborg, A., Irgum, K., Svec, F., Fréchet, J. M. J., Polymer-based monolithic microcolumns for hydrophobic interaction chromatography of proteins. J. Sep. Sci. 2006, 29, 25-32.
Brandrup, J., Immergut, E. H., Grulke, E. A., Polymer Handbook, John Wiley, New York 1999.
Peters, E. C., Svec, F., Fréchet, J. M. J., Thermally responsive rigid polymer monoliths. Adv. Mater. 1997, 9, 630-633.
Liu, M., Liu, H., Liu, Y., Bai, L., Yang, G., Yang, C., Cheng, J., Preparation and characterization of temperature-responsive poly(N-isopropylacrylamide-co-N,N’-methylenebisacrylamide) monolith for HPLC. J. Chromatogr. A 2011, 1218, 286-292.
Xiong, B., Zhang, L., Zhang, Y., Zou, H., Wang, J., Capillary electrochromatography with monolithic poly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase. J. High Resolut. Chromatogr. 2000, 23, 67-72.
Guerrouache, M., Millot, M.-C., Carbonnier, B., Functionalization of macroporous organic polymer monolith based on succinimide ester reactivity for chiral capillary chromatography: a cyclodextrin click approach. Macromol. Rapid Commun. 2009, 30, 109-113.
Yang, S., Ye, F., Lv, Q., Zhang, C., Shen, S., Zhao, S., Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A 2014, 1360, 143-149.
Nischang, I., Teasdale, I., Brüggemann, O., Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J. Chromatogr. A 2010, 1217, 7514-7522.
Sharma, S., Plistil, A., Simpson, R. S., Liu, K., Farnsworth, P. B., Stearns, S. D., Lee, M. L., Instrumentation for hand-portable liquid chromatography. J. Chromatogr. A 2014, 1327, 80-89.
Niu, W., Wang, L., Bai, L., Yang, G., The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography. J. Chromatogr. A 2013, 1297, 131-137.
Zhang, H., Bai, L., Wei, Z., Liu, S., Liu, H., Yan, H., Fabrication of an ionic liquid-based macroporous polymer monolithic column via atom transfer radical polymerization for the separation of small molecules. Talanta 2016, 149, 62-68.
He, J., Wang, X., Morill, M., Shamsi, S., Amino acid bound surfactants: a new synthetic family of polymeric monoliths opening up possibilities for chiral separations in capillary electrochromatography. Anal. Chem. 2012, 84, 5236-5242.