ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation.
ABCB5
MITF
melanoma
stem cells
β-catenin
Journal
Pigment cell & melanoma research
ISSN: 1755-148X
Titre abrégé: Pigment Cell Melanoma Res
Pays: England
ID NLM: 101318927
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
05
07
2019
revised:
11
09
2019
accepted:
27
09
2019
pubmed:
9
10
2019
medline:
11
11
2020
entrez:
10
10
2019
Statut:
ppublish
Résumé
Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.
Substances chimiques
ABCB5 protein, human
0
ATP Binding Cassette Transporter, Subfamily B
0
Microphthalmia-Associated Transcription Factor
0
beta Catenin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
112-118Informations de copyright
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Bertolotto, C., Lesueur, F., Giuliano, S., Strub, T., de Lichy, M., Bille, K., … Bressac-de Paillerets, B. (2011). A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature, 480, 94-98. https://doi.org/10.1038/nature10539
Boiko, A. D., Razorenova, O. V., van de Rijn, M., Swetter, S. M., Johnson, D. L., Ly, D. P., … Weissman, I. L. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 466, 133-137. https://doi.org/10.1038/nature09161
Carreira, S., Goodall, J., Aksan, I., La Rocca, S. A., Galibert, M. D., Denat, L., … Goding, C. R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature, 433, 764-769. https://doi.org/10.1038/nature03269
Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K. S., … Goding, C. R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes & Development, 20, 3426-3439. https://doi.org/10.1101/gad.406406
Cheli, Y., Bonnazi, V. F., Jacquel, A., Allegra, M., De Donatis, G. M., Bahadoran, P., … Ballotti, R. (2014). CD271 is an imperfect marker for melanoma initiating cells. Oncotarget, 5, 5272-5283. https://doi.org/10.18632/oncotarget.1967
Cheli, Y., Giuliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., … Ballotti, R. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene, 30, 2307-2318. https://doi.org/10.1038/onc.2010.598
Cheli, Y., Ohanna, M., Ballotti, R., & Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell & Melanoma Research, 23(1), 27-40. https://doi.org/10.1111/j.1755-148X.2009.00653.x
Chen, K. G., Valencia, J. C., Gillet, J. P., Hearing, V. J., & Gottesman, M. M. (2009). Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell & Melanoma Research, 22(6), 740-749. https://doi.org/10.1111/j.1755-148X.2009.00630.x
Dorsky, R. I., Raible, D. W., & Moon, R. T. (2000). Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes & Development, 14, 158-162.
Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., … Fisher, D. E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6, 565-576. https://doi.org/10.1016/j.ccr.2004.10.014
Dugo, M., Nicolini, G., Tragni, G., Bersani, I., Tomassetti, A., Colonna, V., … Sensi, M. (2015). A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification. Oncotarget, 6, 5118-5133. https://doi.org/10.18632/oncotarget.3007
Ennen, M., Keime, C., Gambi, G., Kieny, A., Coassolo, S., Thibault-Carpentier, C., … Davidson, I. (2017). MITF-High and MITF-low cells and a novel subpopulation expressing genes of both cell states contribute to intra- and intertumoral heterogeneity of primary melanoma. Clinical Cancer Research, 23, 7097-7107.
Ennen, M., Keime, C., Kobi, D., Mengus, G., Lipsker, D., Thibault-Carpentier, C., & Davidson, I. (2015). Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene, 34, 3251-3263. https://doi.org/10.1038/onc.2014.262
Falletta, P., Sanchez-del-Campo, L., Chauhan, J., Effern, M., Kenyon, A., Kershaw, C. J., … Goding, C. R. (2017). Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes & Development, 31, 18-33. https://doi.org/10.1101/gad.290940.116
Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., … Frank, M. H. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Research, 65, 4320-4333. https://doi.org/10.1158/0008-5472.CAN-04-3327
Gaggioli, C., Busca, R., Abbe, P., Ortonne, J. P., & Ballotti, R. (2003). Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Research, 16, 374-382. https://doi.org/10.1034/j.1600-0749.2003.00057.x
Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., … Sellers, W. R. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117-122. https://doi.org/10.1038/nature03664
Giuliano, S., Cheli, Y., Ohanna, M., Bonet, C., Beuret, L., Bille, K., … Bertolotto, C. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Research, 70, 3813-3822. https://doi.org/10.1158/0008-5472.CAN-09-2913
Goding, C. R., & Arnheiter, H. (2019). MITF - the first 25 years. Genes & Development, 33, 983-1007. https://doi.org/10.1101/gad.324657.119
Goodall, J., Martinozzi, S., Dexter, T. J., Champeval, D., Carreira, S., Larue, L., & Goding, C. R. (2004). Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Molecular and Cellular Biology, 24, 2915-2922.
Guo, H., Xing, Y., Liu, Y., Luo, Y., Deng, F., Yang, T., … Li, Y. (2016). Wnt/beta-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo. Journal of Dermatological Science, 83, 45-51.
Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., … Widlund, H. R. (2013). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell, 23, 302-315.
Held, M., & Bosenberg, M. (2010). A role for the JARID1B stem cell marker for continuous melanoma growth. Pigment Cell & Melanoma Research, 23(4), 481-483. https://doi.org/10.1111/j.1755-148X.2010.00726.x
Held, M. A., Curley, D. P., Dankort, D., McMahon, M., Muthusamy, V., & Bosenberg, M. W. (2010). Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Research, 70, 388-397. https://doi.org/10.1158/0008-5472.CAN-09-2153
Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., & Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74, 395-404. https://doi.org/10.1016/0092-8674(93)90429-T
Hoek, K., & Goding, C. R. (2010). Cancer stem cells versus phenotype switching in melanoma. Pigment Cell & Melanoma Research, 23(6), 746-759. https://doi.org/10.1111/j.1755-148X.2010.00757.x
Hoek, K. S., Schlegel, N. C., Brafford, P., Sucker, A., Ugurel, S., Kumar, R., … Dummer, R. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Research, 19, 290-302. https://doi.org/10.1111/j.1600-0749.2006.00322.x
Johannessen, C. M., Johnson, L. A., Piccioni, F., Townes, A., Frederick, D. T., Donahue, M. K., … Garraway, L. A. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature, 504, 138-142. https://doi.org/10.1038/nature12688
Konieczkowski, D. J., Johannessen, C. M., Abudayyeh, O., Kim, J. W., Cooper, Z. A., Piris, A., … Garraway, L. A. (2014). A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discovery, 4, 816-827. https://doi.org/10.1158/2159-8290.CD-13-0424
Lin, J. Y., Zhang, M., Schatton, T., Wilson, B. J., Alloo, A., Ma, J., … Frank, M. H. (2013). Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk. Biochemical and Biophysical Research Communications, 436(3), 536-542. https://doi.org/10.1016/j.bbrc.2013.06.006
Lister, J. A., Capper, A., Zeng, Z., Mathers, M., Richardson, J., Paranthaman, K., … Patton, E. E. (2013). A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion versus regression in vivo. The Journal of Investigative Dermatology, 134, 133-140.
Loercher, A. E., Tank, E. M., Delston, R. B., & Harbour, J. W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. Journal of Cell Biology, 168, 35-40. https://doi.org/10.1083/jcb.200410115
Louphrasitthiphol, P., Ledaki, I., Chauhan, J., Falletta, P., Siddaway, R., Buffa, F. M., … Goding, C. R. (2019). MITF controls the TCA cycle to modulate the melanoma hypoxia response. Pigment Cell & Melanoma Research, 32(6), 792-808. https://doi.org/10.1111/pcmr.12802
Luo, Y., Ellis, L. Z., Dallaglio, K., Takeda, M., Robinson, W. A., Robinson, S. E., … Fujita, M. (2012). Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. The Journal of Investigative Dermatology, 132, 2440-2450. https://doi.org/10.1038/jid.2012.161
Müller, J., Krijgsman, O., Tsoi, J., Robert, L., Hugo, W., Song, C., … Peeper, D. S. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 5, 5712. https://doi.org/10.1038/ncomms6712
Perego, M., Maurer, M., Wang, J. X., Shaffer, S., Müller, A. C., Parapatics, K., … Herlyn, M. (2018). A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene, 37, 302-312. https://doi.org/10.1038/onc.2017.341
Ploper, D., Taelman, V. F., Robert, L., Perez, B. S., Titz, B., Chen, H. W., … De Robertis, E. M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E420-429. https://doi.org/10.1073/pnas.1424576112
Quintana, E., Shackleton, M., Foster, H. R., Fullen, D. R., Sabel, M. S., Johnson, T. M., & Morrison, S. J. (2010). Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell, 18, 510-523. https://doi.org/10.1016/j.ccr.2010.10.012
Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456, 593-598. https://doi.org/10.1038/nature07567
Rambow, F., Marine, J. C., & Goding, C. R. (2019). Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities. Genes & Development, 33, 1295-1318. https://doi.org/10.1101/gad.329771.119
Rambow, F., Rogiers, A., Marin-Bejar, O., Aibar, S., Femel, J., Dewaela, M., … Marine, J. C. (2018). Towards minimal residual disease-directed therapy in melanoma. Cell, 174, 843-855.
Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., … Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141, 583-594. https://doi.org/10.1016/j.cell.2010.04.020
Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., … Herlyn, M. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811-825. https://doi.org/10.1016/j.ccr.2013.05.003
Schatton, T., & Frank, M. H. (2008). Cancer stem cells and human malignant melanoma. Pigment Cell & Melanoma Research, 21, 39-55.
Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., … Frank, M. H. (2008). Identification of cells initiating human melanomas. Nature, 451, 345-349. https://doi.org/10.1038/nature06489
Schepsky, A., Bruser, K., Gunnarsson, G. J., Goodall, J., Hallsson, J. H., Goding, C. R., … Hecht, A. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular and Cellular Biology, 26, 8914-8927.
Smith, M. P., Brunton, H., Rowling, E. J., Ferguson, J., Arozarena, I., Miskolczi, Z., … Wellbrock, C. (2016). Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell, 29, 270-284. https://doi.org/10.1016/j.ccell.2016.02.003
Strub, T., Giuliano, S., Ye, T., Bonet, C., Keime, C., Kobi, D., … Davidson, I. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene, 30, 2319-2332. https://doi.org/10.1038/onc.2010.612
Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., … Shibahara, S. (2000). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. Journal of Biological Chemistry, 275, 14013-14016. https://doi.org/10.1074/jbc.C000113200
Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., … Garraway, L. A. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352, 189-196. https://doi.org/10.1126/science.aad0501
Tsoi, J., Robert, L., Paraiso, K., Galvan, C., Sheu, K. M., Lay, J., … Graeber, T. G. (2018). Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 33(890-904), e895. https://doi.org/10.1016/j.ccell.2018.03.017
Vachtenheim, J., Novotna, H., & Ghanem, G. (2001). Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. The Journal of Investigative Dermatology, 117, 1505-1511. https://doi.org/10.1046/j.0022-202x.2001.01563.x
Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., … Puigserver, P. (2013). PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 23, 287-301.
Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., … Aerts, S. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. https://doi.org/10.1038/ncomms7683
Widlund, H. R., Horstmann, M. A., Price, E. R., Cui, J., Lessnick, S. L., Wu, M., … Fisher, D. E. (2002). Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. Journal of Cell Biology, 158, 1079-1087.
Yamada, T., Hasegawa, S., Inoue, Y., Date, Y., Yamamoto, N., Mizutani, H., … Akamatsu, H. (2013). Wnt/beta-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. The Journal of Investigative Dermatology, 133, 2753-2762.
Yokoyama, S., Woods, S. L., Boyle, G. M., Aoude, L. G., MacGregor, S., Zismann, V., … Brown, K. M. (2011). A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 480, 99-103. https://doi.org/10.1038/nature10630
Zhang, C.-S., Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.-L., … Lin, S.-C. (2014). The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metabolism, 20, 526-540. https://doi.org/10.1016/j.cmet.2014.06.014