ABCB5 is activated by MITF and β-catenin and is associated with melanoma differentiation.


Journal

Pigment cell & melanoma research
ISSN: 1755-148X
Titre abrégé: Pigment Cell Melanoma Res
Pays: England
ID NLM: 101318927

Informations de publication

Date de publication:
01 2020
Historique:
received: 05 07 2019
revised: 11 09 2019
accepted: 27 09 2019
pubmed: 9 10 2019
medline: 11 11 2020
entrez: 10 10 2019
Statut: ppublish

Résumé

Defining markers of different phenotypic states in melanoma is important for understanding disease progression, determining the response to therapy, and defining the molecular mechanisms underpinning phenotype-switching driven by the changing intratumor microenvironment. The ABCB5 transporter is implicated in drug-resistance and has been identified as a marker of melanoma-initiating cells. Indeed ongoing studies are using ABCB5 to define stem cell populations. However, we show here that the ABCB5 is a direct target for the microphthalmia-associated transcription factor MITF and its expression can be induced by β-catenin, a key activator and co-factor for MITF. Consequently, ABCB5 mRNA expression is primarily associated with melanoma cells exhibiting differentiation markers. The results suggest first that ABCB5 is unlikely to represent a marker of de-differentiated melanoma stem cells, and second that ABCB5 may contribute to the non-genetic drug-resistance associated with highly differentiated melanoma cells. To reconcile the apparently conflicting observations in the field, we propose a model in which ABCB5 may mark a slow-cycling differentiated population of melanoma cells.

Identifiants

pubmed: 31595650
doi: 10.1111/pcmr.12830
doi:

Substances chimiques

ABCB5 protein, human 0
ATP Binding Cassette Transporter, Subfamily B 0
Microphthalmia-Associated Transcription Factor 0
beta Catenin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

112-118

Informations de copyright

© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Bertolotto, C., Lesueur, F., Giuliano, S., Strub, T., de Lichy, M., Bille, K., … Bressac-de Paillerets, B. (2011). A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature, 480, 94-98. https://doi.org/10.1038/nature10539
Boiko, A. D., Razorenova, O. V., van de Rijn, M., Swetter, S. M., Johnson, D. L., Ly, D. P., … Weissman, I. L. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 466, 133-137. https://doi.org/10.1038/nature09161
Carreira, S., Goodall, J., Aksan, I., La Rocca, S. A., Galibert, M. D., Denat, L., … Goding, C. R. (2005). Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature, 433, 764-769. https://doi.org/10.1038/nature03269
Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K. S., … Goding, C. R. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes & Development, 20, 3426-3439. https://doi.org/10.1101/gad.406406
Cheli, Y., Bonnazi, V. F., Jacquel, A., Allegra, M., De Donatis, G. M., Bahadoran, P., … Ballotti, R. (2014). CD271 is an imperfect marker for melanoma initiating cells. Oncotarget, 5, 5272-5283. https://doi.org/10.18632/oncotarget.1967
Cheli, Y., Giuliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., … Ballotti, R. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene, 30, 2307-2318. https://doi.org/10.1038/onc.2010.598
Cheli, Y., Ohanna, M., Ballotti, R., & Bertolotto, C. (2010). Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell & Melanoma Research, 23(1), 27-40. https://doi.org/10.1111/j.1755-148X.2009.00653.x
Chen, K. G., Valencia, J. C., Gillet, J. P., Hearing, V. J., & Gottesman, M. M. (2009). Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell & Melanoma Research, 22(6), 740-749. https://doi.org/10.1111/j.1755-148X.2009.00630.x
Dorsky, R. I., Raible, D. W., & Moon, R. T. (2000). Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes & Development, 14, 158-162.
Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., … Fisher, D. E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6, 565-576. https://doi.org/10.1016/j.ccr.2004.10.014
Dugo, M., Nicolini, G., Tragni, G., Bersani, I., Tomassetti, A., Colonna, V., … Sensi, M. (2015). A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification. Oncotarget, 6, 5118-5133. https://doi.org/10.18632/oncotarget.3007
Ennen, M., Keime, C., Gambi, G., Kieny, A., Coassolo, S., Thibault-Carpentier, C., … Davidson, I. (2017). MITF-High and MITF-low cells and a novel subpopulation expressing genes of both cell states contribute to intra- and intertumoral heterogeneity of primary melanoma. Clinical Cancer Research, 23, 7097-7107.
Ennen, M., Keime, C., Kobi, D., Mengus, G., Lipsker, D., Thibault-Carpentier, C., & Davidson, I. (2015). Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene, 34, 3251-3263. https://doi.org/10.1038/onc.2014.262
Falletta, P., Sanchez-del-Campo, L., Chauhan, J., Effern, M., Kenyon, A., Kershaw, C. J., … Goding, C. R. (2017). Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes & Development, 31, 18-33. https://doi.org/10.1101/gad.290940.116
Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., … Frank, M. H. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Research, 65, 4320-4333. https://doi.org/10.1158/0008-5472.CAN-04-3327
Gaggioli, C., Busca, R., Abbe, P., Ortonne, J. P., & Ballotti, R. (2003). Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Research, 16, 374-382. https://doi.org/10.1034/j.1600-0749.2003.00057.x
Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., … Sellers, W. R. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436, 117-122. https://doi.org/10.1038/nature03664
Giuliano, S., Cheli, Y., Ohanna, M., Bonet, C., Beuret, L., Bille, K., … Bertolotto, C. (2010). Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Research, 70, 3813-3822. https://doi.org/10.1158/0008-5472.CAN-09-2913
Goding, C. R., & Arnheiter, H. (2019). MITF - the first 25 years. Genes & Development, 33, 983-1007. https://doi.org/10.1101/gad.324657.119
Goodall, J., Martinozzi, S., Dexter, T. J., Champeval, D., Carreira, S., Larue, L., & Goding, C. R. (2004). Brn-2 expression controls melanoma proliferation and is directly regulated by beta-catenin. Molecular and Cellular Biology, 24, 2915-2922.
Guo, H., Xing, Y., Liu, Y., Luo, Y., Deng, F., Yang, T., … Li, Y. (2016). Wnt/beta-catenin signaling pathway activates melanocyte stem cells in vitro and in vivo. Journal of Dermatological Science, 83, 45-51.
Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., … Widlund, H. R. (2013). Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell, 23, 302-315.
Held, M., & Bosenberg, M. (2010). A role for the JARID1B stem cell marker for continuous melanoma growth. Pigment Cell & Melanoma Research, 23(4), 481-483. https://doi.org/10.1111/j.1755-148X.2010.00726.x
Held, M. A., Curley, D. P., Dankort, D., McMahon, M., Muthusamy, V., & Bosenberg, M. W. (2010). Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Research, 70, 388-397. https://doi.org/10.1158/0008-5472.CAN-09-2153
Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., & Arnheiter, H. (1993). Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell, 74, 395-404. https://doi.org/10.1016/0092-8674(93)90429-T
Hoek, K., & Goding, C. R. (2010). Cancer stem cells versus phenotype switching in melanoma. Pigment Cell & Melanoma Research, 23(6), 746-759. https://doi.org/10.1111/j.1755-148X.2010.00757.x
Hoek, K. S., Schlegel, N. C., Brafford, P., Sucker, A., Ugurel, S., Kumar, R., … Dummer, R. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Research, 19, 290-302. https://doi.org/10.1111/j.1600-0749.2006.00322.x
Johannessen, C. M., Johnson, L. A., Piccioni, F., Townes, A., Frederick, D. T., Donahue, M. K., … Garraway, L. A. (2013). A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature, 504, 138-142. https://doi.org/10.1038/nature12688
Konieczkowski, D. J., Johannessen, C. M., Abudayyeh, O., Kim, J. W., Cooper, Z. A., Piris, A., … Garraway, L. A. (2014). A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discovery, 4, 816-827. https://doi.org/10.1158/2159-8290.CD-13-0424
Lin, J. Y., Zhang, M., Schatton, T., Wilson, B. J., Alloo, A., Ma, J., … Frank, M. H. (2013). Genetically determined ABCB5 functionality correlates with pigmentation phenotype and melanoma risk. Biochemical and Biophysical Research Communications, 436(3), 536-542. https://doi.org/10.1016/j.bbrc.2013.06.006
Lister, J. A., Capper, A., Zeng, Z., Mathers, M., Richardson, J., Paranthaman, K., … Patton, E. E. (2013). A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion versus regression in vivo. The Journal of Investigative Dermatology, 134, 133-140.
Loercher, A. E., Tank, E. M., Delston, R. B., & Harbour, J. W. (2005). MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. Journal of Cell Biology, 168, 35-40. https://doi.org/10.1083/jcb.200410115
Louphrasitthiphol, P., Ledaki, I., Chauhan, J., Falletta, P., Siddaway, R., Buffa, F. M., … Goding, C. R. (2019). MITF controls the TCA cycle to modulate the melanoma hypoxia response. Pigment Cell & Melanoma Research, 32(6), 792-808. https://doi.org/10.1111/pcmr.12802
Luo, Y., Ellis, L. Z., Dallaglio, K., Takeda, M., Robinson, W. A., Robinson, S. E., … Fujita, M. (2012). Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. The Journal of Investigative Dermatology, 132, 2440-2450. https://doi.org/10.1038/jid.2012.161
Müller, J., Krijgsman, O., Tsoi, J., Robert, L., Hugo, W., Song, C., … Peeper, D. S. (2014). Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nature Communications, 5, 5712. https://doi.org/10.1038/ncomms6712
Perego, M., Maurer, M., Wang, J. X., Shaffer, S., Müller, A. C., Parapatics, K., … Herlyn, M. (2018). A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene, 37, 302-312. https://doi.org/10.1038/onc.2017.341
Ploper, D., Taelman, V. F., Robert, L., Perez, B. S., Titz, B., Chen, H. W., … De Robertis, E. M. (2015). MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E420-429. https://doi.org/10.1073/pnas.1424576112
Quintana, E., Shackleton, M., Foster, H. R., Fullen, D. R., Sabel, M. S., Johnson, T. M., & Morrison, S. J. (2010). Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell, 18, 510-523. https://doi.org/10.1016/j.ccr.2010.10.012
Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456, 593-598. https://doi.org/10.1038/nature07567
Rambow, F., Marine, J. C., & Goding, C. R. (2019). Melanoma plasticity and phenotypic diversity: Therapeutic barriers and opportunities. Genes & Development, 33, 1295-1318. https://doi.org/10.1101/gad.329771.119
Rambow, F., Rogiers, A., Marin-Bejar, O., Aibar, S., Femel, J., Dewaela, M., … Marine, J. C. (2018). Towards minimal residual disease-directed therapy in melanoma. Cell, 174, 843-855.
Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., … Herlyn, M. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141, 583-594. https://doi.org/10.1016/j.cell.2010.04.020
Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., … Herlyn, M. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811-825. https://doi.org/10.1016/j.ccr.2013.05.003
Schatton, T., & Frank, M. H. (2008). Cancer stem cells and human malignant melanoma. Pigment Cell & Melanoma Research, 21, 39-55.
Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., … Frank, M. H. (2008). Identification of cells initiating human melanomas. Nature, 451, 345-349. https://doi.org/10.1038/nature06489
Schepsky, A., Bruser, K., Gunnarsson, G. J., Goodall, J., Hallsson, J. H., Goding, C. R., … Hecht, A. (2006). The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Molecular and Cellular Biology, 26, 8914-8927.
Smith, M. P., Brunton, H., Rowling, E. J., Ferguson, J., Arozarena, I., Miskolczi, Z., … Wellbrock, C. (2016). Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell, 29, 270-284. https://doi.org/10.1016/j.ccell.2016.02.003
Strub, T., Giuliano, S., Ye, T., Bonet, C., Keime, C., Kobi, D., … Davidson, I. (2011). Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene, 30, 2319-2332. https://doi.org/10.1038/onc.2010.612
Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., … Shibahara, S. (2000). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. Journal of Biological Chemistry, 275, 14013-14016. https://doi.org/10.1074/jbc.C000113200
Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., … Garraway, L. A. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 352, 189-196. https://doi.org/10.1126/science.aad0501
Tsoi, J., Robert, L., Paraiso, K., Galvan, C., Sheu, K. M., Lay, J., … Graeber, T. G. (2018). Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 33(890-904), e895. https://doi.org/10.1016/j.ccell.2018.03.017
Vachtenheim, J., Novotna, H., & Ghanem, G. (2001). Transcriptional repression of the microphthalmia gene in melanoma cells correlates with the unresponsiveness of target genes to ectopic microphthalmia-associated transcription factor. The Journal of Investigative Dermatology, 117, 1505-1511. https://doi.org/10.1046/j.0022-202x.2001.01563.x
Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., … Puigserver, P. (2013). PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 23, 287-301.
Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., … Aerts, S. (2015). Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 6, 6683. https://doi.org/10.1038/ncomms7683
Widlund, H. R., Horstmann, M. A., Price, E. R., Cui, J., Lessnick, S. L., Wu, M., … Fisher, D. E. (2002). Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. Journal of Cell Biology, 158, 1079-1087.
Yamada, T., Hasegawa, S., Inoue, Y., Date, Y., Yamamoto, N., Mizutani, H., … Akamatsu, H. (2013). Wnt/beta-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. The Journal of Investigative Dermatology, 133, 2753-2762.
Yokoyama, S., Woods, S. L., Boyle, G. M., Aoude, L. G., MacGregor, S., Zismann, V., … Brown, K. M. (2011). A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 480, 99-103. https://doi.org/10.1038/nature10630
Zhang, C.-S., Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.-L., … Lin, S.-C. (2014). The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metabolism, 20, 526-540. https://doi.org/10.1016/j.cmet.2014.06.014

Auteurs

Pakavarin Louphrasitthiphol (P)

Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.

Jagat Chauhan (J)

Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.

Colin R Goding (CR)

Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH