Bioengineering and in utero transplantation of fetal skin in the sheep model: A crucial step towards clinical application in human fetal spina bifida repair.
Animals
Biomedical Engineering
Biopsy
Cell Transplantation
/ methods
Epidermis
Fetoscopy
/ methods
Fibroblasts
/ cytology
Keratinocytes
/ cytology
Risk
Sheep
Silicon
/ chemistry
Skin
/ pathology
Skin Transplantation
/ methods
Skin, Artificial
Spinal Dysraphism
/ surgery
Tissue Engineering
/ methods
Tissue Scaffolds
fetal skin
fetal surgery
in utero
spina bifida
tissue engineered skin
transplantation
Journal
Journal of tissue engineering and regenerative medicine
ISSN: 1932-7005
Titre abrégé: J Tissue Eng Regen Med
Pays: England
ID NLM: 101308490
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
10
03
2019
revised:
02
08
2019
accepted:
05
09
2019
pubmed:
9
10
2019
medline:
9
7
2021
entrez:
10
10
2019
Statut:
ppublish
Résumé
An intricate problem during open human fetal surgery for spina bifida regards back skin closure, particularly in those cases where the skin defect is much too large for primary closure. We hypothesize that tissue engineering of fetal skin might provide an adequate autologous skin substitute for in utero application in such situations. Eight sheep fetuses of four time-mated ewes underwent fetoscopic skin biopsy at 65 days of gestation. Fibroblasts and keratinocytes isolated from the biopsy were used to create fetal dermo-epidermal skin substitutes. These were transplanted on the fetuses by open fetal surgery at 90 days of gestation on skin defects (excisional wounds) created during the same procedure. Pregnancy was allowed to continue until euthanasia at 120 days of gestation. The graft area was analyzed macroscopically and microscopically. The transplanted fetal dermo-epidermal skin substitutes was well discernable in situ in three of the four fetuses available for analysis. Histology confirmed healed grafts with a close to natural histological skin architecture four weeks after in utero transplantation. This experimental study generates evidence that laboratory grown autologous fetal skin analogues can successfully be transplanted in utero. These results have clinical implications as an analogous procedure might be applied in human fetuses undergoing prenatal repair to facilitate primary skin closure. Finally, this study may also fertilize the field of fetal tissue engineering in general, particularly when more interventional, minimally invasive, and open fetal surgical procedures become available.
Substances chimiques
Silicon
Z4152N8IUI
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
58-65Informations de copyright
© 2019 John Wiley & Sons, Ltd.
Références
Adzick, N. S., & Longaker, M. T. (1992). Scarless fetal healing. Therapeutic implications. Annals of Surgery, 215(1), 3-7. https://doi.org/10.1097/00000658-199201000-00004
Adzick, N. S., Thom, E. A., Spong, C. Y., Brock, J. W. 3rd, Burrows, P. K., Johnson, M. P., … Investigators, M. (2011). A randomized trial of prenatal versus postnatal repair of myelomeningocele. The New England Journal of Medicine, 364(11), 993-1004. https://doi.org/10.1056/NEJMoa1014379
Bouchard, S., Davey, M. G., Rintoul, N. E., Walsh, D. S., Rorke, L. B., & Adzick, N. S. (2003). Correction of hindbrain herniation and anatomy of the vermis after in utero repair of myelomeningocele in sheep. Journal of Pediatric Surgery, 38(3), 451-458; discussion 451-458. https://doi.org/10.1053/jpsu.2003.50078
Braziulis, E., Diezi, M., Biedermann, T., Pontiggia, L., Schmucki, M., Hartmann-Fritsch, F., … Reichmann, E. (2012). Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Engineering. Part C, Methods, 18(6), 464-474. https://doi.org/10.1089/ten.TEC.2011.0561
Brown, E. G., Keller, B. A., Pivetti, C. D., & Farmer, D. L. (2015). Innate healing in the fetal sheep model of myelomeningocele: A standardized defect grading system. Journal of Pediatric Surgery, 50(7), 1134-1136. https://doi.org/10.1016/j.jpedsurg.2014.10.021
Chua, A. W., Khoo, Y. C., Tan, B. K., Tan, K. C., Foo, C. L., & Chong, S. J. (2016). Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burns Trauma, 4, 3. https://doi.org/10.1186/s41038-016-0027-y
Copp, A. J., Adzick, N. S., Chitty, L. S., Fletcher, J. M., Holmbeck, G. N., & Shaw, G. M. (2015). Spina bifida. Nature Reviews. Disease Primers, 1, 15007. https://doi.org/10.1038/nrdp.2015.7
Goodnight, W. H., Bahtiyar, O., Bennett, K. A., Emery, S. P., Lillegard, J. B., Fisher, A., … fMMC Consortium sponsored by NAFTNet (2019). Subsequent pregnancy outcomes after open maternal-fetal surgery for myelomeningocele. American Journal of Obstetrics and Gynecology, 220(5), 494 e491-494 e497. https://doi.org/10.1016/j.ajog.2019.03.008
Johnson, M. P., Bennett, K. A., Rand, L., Burrows, P. K., Thom, E. A., Howell, L. J., … Management of Myelomeningocele Study, I (2016). The Management of Myelomeningocele Study: Obstetrical outcomes and risk factors for obstetrical complications following prenatal surgery. American Journal of Obstetrics and Gynecology, 215(6), 778 e771-778 e779. https://doi.org/10.1016/j.ajog.2016.07.052
Joyeux, L., Engels, A. C., Russo, F. M., Jimenez, J., Van Mieghem, T., De Coppi, P., … Deprest, J. (2016). Fetoscopic versus open repair for spina bifida aperta: A systematic review of outcomes. Fetal Diagnosis and Therapy, 39(3), 161-171. https://doi.org/10.1159/000443498
Kohl, T. (2014). Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part I: Surgical technique and perioperative outcome. Ultrasound in Obstetrics & Gynecology, 44(5), 515-524. https://doi.org/10.1002/uog.13430
Kohl, T., Hartlage, M. G., Kiehitz, D., Westphal, M., Buller, T., Achenbach, S., … Brentrup, A. (2003). Percutaneous fetoscopic patch coverage of experimental lumbosacral full-thickness skin lesions in sheep. Surgical Endoscopy, 17(8), 1218-1223. https://doi.org/10.1007/s00464-002-9184-0
Kohl, T., Hering, R., Heep, A., Schaller, C., Meyer, B., Greive, C., … Gembruch, U. (2006). Percutaneous fetoscopic patch coverage of spina bifida aperta in the human--early clinical experience and potential. Fetal Diagnosis and Therapy, 21(2), 185-193. https://doi.org/10.1159/000089301
Lapa Pedreira, D. A., Acacio, G. L., Goncalves, R. T., Sa, R. A. M., Brandt, R. A., Chmait, R. H., … Quintero, R. A. (2018). Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute. Ultrasound in Obstetrics & Gynecology, 52(4), 458-466. https://doi.org/10.1002/uog.19001
Lo, D. D., Zimmermann, A. S., Nauta, A., Longaker, M. T., & Lorenz, H. P. (2012). Scarless fetal skin wound healing update. Birth Defects Research. Part C, Embryo Today, 96(3), 237-247. https://doi.org/10.1002/bdrc.21018
Lorenz, H. P., Longaker, M. T., Perkocha, L. A., Jennings, R. W., Harrison, M. R., & Adzick, N. S. (1992). Scarless wound repair: A human fetal skin model. Development, 114(1), 253-259.
Mangels, K. J., Tulipan, N., Bruner, J. P., & Nickolaus, D. (2000). Use of bipedicular advancement flaps for intrauterine closure of myeloschisis. Pediatric Neurosurgery, 32(1), 52-56. https://doi.org/10.1159/000028898
Mazzone, L., Pontiggia, L., Reichmann, E., Ochsenbein-Kolble, N., Moehrlen, U., & Meuli, M. (2014). Experimental tissue engineering of fetal skin. Pediatric Surgery International, 30(12), 1241-1247. https://doi.org/10.1007/s00383-014-3614-7
Mazzone, L., Pratsinis, M., Pontiggia, L., Reichmann, E., & Meuli, M. (2016). Successful grafting of tissue-engineered fetal skin. Pediatric Surgery International, 32(12), 1177-1182. https://doi.org/10.1007/s00383-016-3977-z
Meschia, G., Cotter, J. R., Breathnach, C. S., & Barron, D. H. (1965). The Hemoglobin, Oxygen, Carbon Dioxide and Hydrogen Ion Concentrations in the Umbilical Bloods of Sheep and Goats as Sampled Via Indwelling Plastic Catheters. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 50, 185-195. https://doi.org/10.1113/expphysiol.1965.sp001780
Meuli, M., Meuli-Simmen, C., Flake, A. W., Zimmermann, R., Ochsenbein, N., Scheer, I., … Moehrlen, U. (2013). Premiere use of Integra artificial skin to close an extensive fetal skin defect during open in utero repair of myelomeningocele. Pediatric Surgery International, 29(12), 1321-1326. https://doi.org/10.1007/s00383-013-3412-7
Meuli, M., Meuli-Simmen, C., Hutchins, G. M., Yingling, C. D., Hoffman, K. M., Harrison, M. R., & Adzick, N. S. (1995). In utero surgery rescues neurological function at birth in sheep with spina bifida. Nature Medicine, 1(4), 342-347. https://doi.org/10.1038/nm0495-342
Meuli, M., Meuli-Simmen, C., Mazzone, L., Tharakan, S. J., Zimmermann, R., Ochsenbein, N., & Moehrlen, U. (2017). In utero plastic surgery in Zurich: Successful use of distally pedicled random pattern transposition flaps for definitive skin closure during open fetal spina bifida repair. Fetal Diagnosis and Therapy, 44, 173-178. https://doi.org/10.1159/000479926
Meuli, M., & Moehrlen, U. (2013). Fetal surgery for myelomeningocele: A critical appraisal. European Journal of Pediatric Surgery, 23(2), 103-109. https://doi.org/10.1055/s-0033-1343082
Meuli, M., & Moehrlen, U. (2014). Fetal surgery for myelomeningocele is effective: A critical look at the whys. Pediatric Surgery International, 30(7), 689-697. https://doi.org/10.1007/s00383-014-3524-8
Paek, B. W., Farmer, D. L., Wilkinson, C. C., Albanese, C. T., Peacock, W., Harrison, M. R., & Jennings, R. W. (2000). Hindbrain herniation develops in surgically created myelomeningocele but is absent after repair in fetal lambs. American Journal of Obstetrics and Gynecology, 183(5), 1119-1123. https://doi.org/10.1067/mob.2000.108867
Papanna, R., Fletcher, S., Moise, K. J. Jr., Mann, L. K., & Tseng, S. C. (2016). Cryopreserved Human Umbilical Cord for In Utero Myeloschisis Repair. Obstetrics and Gynecology, 128(2), 325-330. https://doi.org/10.1097/AOG.0000000000001512
Pedreira, D. A., Quintero, R. A., Acacio, G. L., Caldini, E. T., & Saldiva, P. H. (2011). Neoskin development in the fetus with the use of a three-layer graft: An animal model for in utero closure of large skin defects. The Journal of Maternal-Fetal & Neonatal Medicine, 24(10), 1243-1248. https://doi.org/10.3109/14767058.2011.564486
Pontiggia, L., Biedermann, T., Meuli, M., Widmer, D., Bottcher-Haberzeth, S., Schiestl, C., … Reichmann, E. (2009). Markers to evaluate the quality and self-renewing potential of engineered human skin substitutes in vitro and after transplantation. The Journal of Investigative Dermatology, 129(2), 480-490. https://doi.org/10.1038/jid.2008.254
Schiestl, C., Neuhaus, K., Biedermann, T., Bottcher-Haberzeth, S., Reichmann, E., & Meuli, M. (2011). Novel treatment for massive lower extremity avulsion injuries in children: Slow, but effective with good cosmesis. European Journal of Pediatric Surgery, 21(2), 106-110. https://doi.org/10.1055/s-0030-1267234
Stiefel, D., Schiestl, C., & Meuli, M. (2010). Integra Artificial Skin for burn scar revision in adolescents and children. Burns, 36(1), 114-120. https://doi.org/10.1016/j.burns.2009.02.023