Exploration of Cervical Myelopathy Location From Somatosensory Evoked Potentials Using Random Forests Classification.


Journal

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
ISSN: 1558-0210
Titre abrégé: IEEE Trans Neural Syst Rehabil Eng
Pays: United States
ID NLM: 101097023

Informations de publication

Date de publication:
11 2019
Historique:
pubmed: 12 10 2019
medline: 14 7 2020
entrez: 12 10 2019
Statut: ppublish

Résumé

Studies using time-frequency analysis have reported that somatosensory evoked potentials provide information regarding the location of spinal cord injury. However, a better understanding of the time-frequency components derived from somatosensory evoked potentials is essential for developing more reliable algorithms that can diagnosis level (location) of cervical injury. In the present study, we proposed a random forests machine learning approach, for separating somatosensory evoked potentials depending on spinal cord state. For data acquisition, we established rat models of compression spinal cord injury at the C4, C5, and C6 levels to induce cervical myelopathy. After making the compression injury, we collected somatosensory evoked potentials and extracted their time-frequency components. We then used the random forests classification system to analyze the evoked potential dataset that was obtained from the three groups of model rats. Evaluation of the classifier performance revealed an overall classification accuracy of 84.72%, confirming that the random forests method was able to separate the time-frequency components of somatosensory evoked potentials from rats under different conditions. Features of the time-frequency components contained information that could identify the location of the cervical spinal cord injury, demonstrating the potential benefits of using time-frequency components of somatosensory evoked potentials to diagnose the level of cervical injury in cervical myelopathy.

Identifiants

pubmed: 31603823
doi: 10.1109/TNSRE.2019.2945634
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2254-2262

Auteurs

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH