Would Colloidal Gold Nanocarriers Present An Effective Diagnosis Or Treatment For Ischemic Stroke?
Animals
Antibodies, Monoclonal
/ metabolism
Brain Ischemia
/ cerebrospinal fluid
Drug Carriers
/ chemistry
Gold Colloid
/ administration & dosage
Humans
Hydrodynamics
Male
Metal Nanoparticles
/ administration & dosage
Oxidative Stress
/ drug effects
Particle Size
Rats, Wistar
Static Electricity
Stroke
/ complications
cytotoxicity
gold nanoparticles
necroptosis
oxidative stress
surface charge
targeted delivery
Journal
International journal of nanomedicine
ISSN: 1178-2013
Titre abrégé: Int J Nanomedicine
Pays: New Zealand
ID NLM: 101263847
Informations de publication
Date de publication:
2019
2019
Historique:
received:
26
03
2019
accepted:
17
09
2019
entrez:
22
10
2019
pubmed:
22
10
2019
medline:
18
12
2019
Statut:
epublish
Résumé
This study was conducted to evaluate OX26-PEG-coated gold nanoparticles (GNPs) (OX26@GNPs) as a novel targeted nanoparticulate system on cell survival after ischemic stroke. Dynamic light scattering (DLS), zeta sizer, and transmission electron microscopy (TEM) were performed to characterize the OX26@GNPs. The effect of OX26@GNPs on infarct volume, neuronal loss, and necroptosis was evaluated 24 h after reperfusion using 2, 3,5-Triphenyltetrazolium chloride (TTC) staining, Nissl staining and Western blot assay, respectively. Conjugation of OX26-PEG to the surface of the 25 nm colloidal gold particles increased their size to 32±2 nm, while a zeta potential change of -40.4 to 3.40 mV remarkably increased the stability of the nanoparticles. Most importantly, OX26@GNPs significantly increased the infarcted brain tissue, while bare GNPs and PEGylated GNPs had no effect on the infarct volume. However, our results indicated an extension of necroptotic cell death, followed by cell membrane damage. Collectively, our results showed that the presently formulated OX26@GNPs are not suitable nanocarriers nor contrast agents under oxidative stress for the diagnosis and treatment of ischemic stroke. Moreover, our findings suggest that the cytotoxicity of GNPs in the brain is significantly associated with their surface charge.
Identifiants
pubmed: 31632015
doi: 10.2147/IJN.S210035
pii: 210035
pmc: PMC6789974
doi:
Substances chimiques
Antibodies, Monoclonal
0
Drug Carriers
0
Gold Colloid
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8013-8031Informations de copyright
© 2019 Amani et al.
Déclaration de conflit d'intérêts
The authors declare no conflicts of interest in this work.
Références
Int J Nanomedicine. 2012;7:5577-91
pubmed: 23144561
J Mater Chem B. 2017 Dec 28;5(48):9452-9476
pubmed: 32264560
J Appl Toxicol. 2009 Jan;29(1):69-78
pubmed: 18756589
Mol Nutr Food Res. 2016 Dec;60(12):2665-2677
pubmed: 27466783
Int J Nanomedicine. 2017 Sep 05;12:6477-6486
pubmed: 28919749
Lancet Neurol. 2016 Jul;15(8):869-881
pubmed: 27180033
Artif Cells Nanomed Biotechnol. 2016;44(1):410-22
pubmed: 25229833
Int J Neurosci. 2009;119(9):1346-61
pubmed: 19922361
Cell. 2015 Apr 23;161(3):610-621
pubmed: 25910210
Neural Regen Res. 2018 Jun;13(6):955-961
pubmed: 29926816
Cancer Gene Ther. 2016 Oct;23(10):365-369
pubmed: 27740614
J Pineal Res. 2017 Aug;63(1):
pubmed: 28398674
Int J Nanomedicine. 2012;7:3133-42
pubmed: 22802682
Int J Nanomedicine. 2017 Sep 08;12:6705-6719
pubmed: 28932115
Nat Nanotechnol. 2014 Nov 24;9(12):1054-1062
pubmed: 25420034
Neurol Sci. 2011 Oct;32(5):811-8
pubmed: 21617951
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3524-3539
pubmed: 31437011
Sci Rep. 2016 Jul 05;6:29362
pubmed: 27377128
Perfusion. 2017 Jul;32(5):394-402
pubmed: 28152655
J Lab Clin Med. 1967 Jul;70(1):158-69
pubmed: 6066618
Biochimie. 2017 Nov;142:63-79
pubmed: 28807562
Sci Rep. 2018 Feb 13;8(1):2907
pubmed: 29440698
Stroke. 1989 Jan;20(1):84-91
pubmed: 2643202
J Control Release. 2013 Sep 28;170(3):352-7
pubmed: 23770007
Nanoscale. 2017 Jul 20;9(28):9848-9858
pubmed: 28650026
Nat Commun. 2017 Feb 08;8:14329
pubmed: 28176780
Small. 2009 Sep;5(18):2067-76
pubmed: 19642089
Nature. 2015 Jan 15;517(7534):311-20
pubmed: 25592536
Redox Biol. 2018 Jun;16:157-168
pubmed: 29502045
Sci Rep. 2019 Apr 15;9(1):6044
pubmed: 30988361
Artif Cells Nanomed Biotechnol. 2016 May;44(3):780-91
pubmed: 26107112
Pharm Biol. 2016 Oct;54(10):2211-9
pubmed: 26960058
Clin Exp Pharmacol Physiol. 2008 Oct;35(10):1209-14
pubmed: 18565196
Sci Rep. 2015 Jun 22;5:11398
pubmed: 26096816
Colloids Surf B Biointerfaces. 2017 Jul 1;155:150-158
pubmed: 28419944
Eur Heart J. 2015 Oct 7;36(38):2555-64
pubmed: 26142467
ACS Biomater Sci Eng. 2019 Jan 14;5(1):193-214
pubmed: 33405863
J Gastroenterol Hepatol. 2001 Mar;16(3):290-6
pubmed: 11339420
Nat Med. 2016 Feb;22(2):175-82
pubmed: 26726877
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):882-890
pubmed: 30887856
Curr Pharm Biotechnol. 2016;17(11):1002-7
pubmed: 27640646
Nat Med. 2018 Jan;24(1):29-38
pubmed: 29200205
Theranostics. 2015 Jul 02;5(10):1098-114
pubmed: 26199648
Nanomedicine (Lond). 2015;10(11):1735-50
pubmed: 26080696
Carbohydr Polym. 2018 Apr 15;186:243-251
pubmed: 29455984
Sci Rep. 2017 Jun 12;7(1):3303
pubmed: 28607366
J Mol Neurosci. 2015 Dec;57(4):554-60
pubmed: 26254913
J Biomed Nanotechnol. 2013 Jun;9(6):1017-28
pubmed: 23858966
Nano Lett. 2009 Mar;9(3):1080-4
pubmed: 19199477
J Mater Chem B. 2015 Apr 21;3(15):2935-2938
pubmed: 32262492
Nanomedicine (Lond). 2014 Apr;9(5):709-22
pubmed: 24827845
J Control Release. 2016 Aug 10;235:34-47
pubmed: 27208862
Fundam Clin Pharmacol. 2003 Oct;17(5):595-8
pubmed: 14703720
Nat Cell Biol. 2014 Jan;16(1):55-65
pubmed: 24316671
Chem Rev. 2015 Mar 11;115(5):2109-35
pubmed: 25757742
Clin Chem. 1988 Mar;34(3):497-500
pubmed: 3349599