Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-stroke Gait: A Feasibility Study.
computational modeling
direct collocation optimal control
fast treadmill training
functional electrical stimulation
muscle synergies
neuromusculoskeletal modeling
paretic propulsion
stroke
Journal
Frontiers in neurorobotics
ISSN: 1662-5218
Titre abrégé: Front Neurorobot
Pays: Switzerland
ID NLM: 101477958
Informations de publication
Date de publication:
2019
2019
Historique:
received:
01
05
2019
accepted:
10
09
2019
entrez:
22
10
2019
pubmed:
22
10
2019
medline:
22
10
2019
Statut:
epublish
Résumé
Stroke is a leading cause of long-term disability worldwide and often impairs walking ability. To improve recovery of walking function post-stroke, researchers have investigated the use of treatments such as fast functional electrical stimulation (FastFES). During FastFES treatments, individuals post-stroke walk on a treadmill at their fastest comfortable speed while electrical stimulation is delivered to two muscles of the paretic ankle, ideally to improve paretic leg propulsion and toe clearance. However, muscle selection and stimulation timing are currently standardized based on clinical intuition and a one-size-fits-all approach, which may explain in part why some patients respond to FastFES training while others do not. This study explores how personalized neuromusculoskeletal models could potentially be used to enable individual-specific selection of target muscles and stimulation timing to address unique functional limitations of individual patients post-stroke. Treadmill gait data, including EMG, surface marker positions, and ground reactions, were collected from an individual post-stroke who was a non-responder to FastFES treatment. The patient's gait data were used to personalize key aspects of a full-body neuromusculoskeletal walking model, including lower-body joint functional axes, lower-body muscle force generating properties, deformable foot-ground contact properties, and paretic and non-paretic leg neural control properties. The personalized model was utilized within a direct collocation optimal control framework to reproduce the patient's unstimulated treadmill gait data (verification problem) and to generate three stimulated walking predictions that sought to minimize inter-limb propulsive force asymmetry (prediction problems). The three predictions used: (1) Standard muscle selection (gastrocnemius and tibialis anterior) with standard stimulation timing, (2) Standard muscle selection with optimized stimulation timing, and (3) Optimized muscle selection (soleus and semimembranosus) with optimized stimulation timing. Relative to unstimulated walking, the optimal control problems predicted a 41% reduction in propulsive force asymmetry for scenario (1), a 45% reduction for scenario (2), and a 64% reduction for scenario (3), suggesting that non-standard muscle selection may be superior for this patient. Despite these predicted improvements, kinematic symmetry was not noticeably improved for any of the walking predictions. These results suggest that personalized neuromusculoskeletal models may be able to predict personalized FastFES training prescriptions that could improve propulsive force symmetry, though inclusion of kinematic requirements would be necessary to improve kinematic symmetry as well.
Identifiants
pubmed: 31632261
doi: 10.3389/fnbot.2019.00080
pmc: PMC6779709
doi:
Types de publication
Journal Article
Langues
eng
Pagination
80Subventions
Organisme : NINDS NIH HHS
ID : F32 NS087775
Pays : United States
Organisme : NICHD NIH HHS
ID : K01 HD079584
Pays : United States
Organisme : NICHD NIH HHS
ID : P2C HD065690
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD046922
Pays : United States
Informations de copyright
Copyright © 2019 Sauder, Meyer, Allen, Ting, Kesar and Fregly.
Références
Neurorehabil Neural Repair. 2016 Aug;30(7):661-70
pubmed: 26621366
J Biomech. 2012 Aug 9;45(12):2157-63
pubmed: 22727468
J Biomech. 2007;40(12):2628-35
pubmed: 17359981
Gait Posture. 2005 Aug;22(1):51-6
pubmed: 15996592
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
pubmed: 18018689
J Neuroeng Rehabil. 2008 Dec 10;5:33
pubmed: 19077188
J Biomech. 2010 Oct 19;43(14):2709-16
pubmed: 20691972
Gait Posture. 2004 Apr;19(2):194-205
pubmed: 15013508
Top Stroke Rehabil. 2007 Nov-Dec;14(6):1-8
pubmed: 18171655
J Nutr Health Aging. 2009 Dec;13(10):881-9
pubmed: 19924348
Nature. 1999 Oct 21;401(6755):788-91
pubmed: 10548103
J Biomech. 2005 Mar;38(3):621-6
pubmed: 15652563
J Alzheimers Dis. 2016 Nov 19;55(2):559-567
pubmed: 27662317
Top Stroke Rehabil. 2018 Apr;25(3):186-193
pubmed: 29457532
Artif Organs. 2011 Mar;35(3):217-20
pubmed: 21401663
J Biomech Eng. 2018 Jan 1;140(1):null
pubmed: 29049521
PLoS One. 2017 Jul 11;12(7):e0179698
pubmed: 28700708
J Neuroeng Rehabil. 2014 Aug 09;11:118
pubmed: 25108539
Med Eng Phys. 2008 May;30(4):434-43
pubmed: 17616425
J Biomech Eng. 2016 Sep 1;138(9):
pubmed: 27379886
Circulation. 2010 Feb 23;121(7):e46-e215
pubmed: 20019324
Nat Med. 2016 Feb;22(2):138-45
pubmed: 26779815
Neurosci Lett. 2011 Jul 12;498(3):204-7
pubmed: 21600267
Arch Phys Med Rehabil. 2014 May;95(5):840-8
pubmed: 24378803
J Exp Biol. 2005 Mar;208(Pt 6):979-91
pubmed: 15767300
J Neuroeng Rehabil. 2008 Feb 27;5:7
pubmed: 18304360
Psychogeriatrics. 2016 May;16(3):165-71
pubmed: 26114989
Clin Neurophysiol. 2007 Apr;118(4):717-29
pubmed: 17307395
Eur J Appl Physiol Occup Physiol. 1974;33(4):293-306
pubmed: 4442409
Gait Posture. 2011 Feb;33(2):309-13
pubmed: 21183351
Rehabil Nurs. 2006 Jan-Feb;31(1):10-4
pubmed: 16422039
J Neuroeng Rehabil. 2012 Mar 30;9:18
pubmed: 22463378
J Neuroeng Rehabil. 2016 Mar 08;13:22
pubmed: 26955873
Arch Phys Med Rehabil. 2006 Jun;87(6):779-85
pubmed: 16731212
Comput Methods Biomech Biomed Engin. 2000;3(4):321-334
pubmed: 11264857
Med J Malaysia. 2016 Dec;71(6):313-321
pubmed: 28087954
Int J Sports Med. 2011 Mar;32(3):216-22
pubmed: 21165808
Neurology. 2017 Jul 25;89(4):336-342
pubmed: 28659421
Ann Biomed Eng. 2016 Oct;44(10):2922-2936
pubmed: 27001399
J Neuroeng Rehabil. 2017 Jun 6;14(1):52
pubmed: 28583196
Stroke. 2007 Jul;38(7):2096-100
pubmed: 17510461
J Biomech. 2006;39(14):2623-30
pubmed: 16216251
J Neuroeng Rehabil. 2015 Aug 28;12:73
pubmed: 26311232
J Bodyw Mov Ther. 2012 Jan;16(1):14-21
pubmed: 22196422
J Am Geriatr Soc. 2013 Apr;61(4):551-7
pubmed: 23527951
Nat Neurosci. 1999 Feb;2(2):162-7
pubmed: 10195201
Front Bioeng Biotechnol. 2016 Oct 13;4:77
pubmed: 27790612
Front Neurol. 2018 Dec 20;9:1127
pubmed: 30619077
J Neuroeng Rehabil. 2015 Jun 07;12:51
pubmed: 26048812
Stroke. 2006 Mar;37(3):872-6
pubmed: 16456121
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):114-26
pubmed: 24122568
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223
pubmed: 30048444
J Biomech. 2001 Nov;34(11):1387-98
pubmed: 11672713