SETD2 related overgrowth syndrome: Presentation of four new patients and review of the literature.
SETD2
autism spectrum disorder
histone methyltransferases
overgrowth
Journal
American journal of medical genetics. Part C, Seminars in medical genetics
ISSN: 1552-4876
Titre abrégé: Am J Med Genet C Semin Med Genet
Pays: United States
ID NLM: 101235745
Informations de publication
Date de publication:
12 2019
12 2019
Historique:
received:
27
06
2019
revised:
27
09
2019
accepted:
04
10
2019
pubmed:
24
10
2019
medline:
6
5
2020
entrez:
24
10
2019
Statut:
ppublish
Résumé
The common genes responsible for overgrowth syndromes play key roles in regulating transcription through histone modification and chromatin modeling. The SETD2 gene encoding a H3K36 trimethyltransferase is implicated in Sotos-like syndrome. This syndrome is characterized by postnatal overgrowth, macrocephaly, obesity, speech delay, and advanced carpal ossification. We report four new patients with constitutional SETD2 mutations and review nine earlier reported patients. Almost all patients presented with macrocephaly associated with advanced stature and obesity in half of the cases. In addition to these principal manifestations, neurodevelopmental disorders are common such as intellectual disability (83%), autism spectrum disorders (89%), and behavioral difficulties (100%) with aggressive outbursts (83%). A variety of features such as joint hypermobility (29%), hirsutism (33%), and naevi (50%) were also reported. Constitutional SETD2 mutations are intragenic loss-of-function variants with truncating (69%) and missense (31%) mutations. Functional studies are necessary to improve understanding of the pathogenicity of some missense SETD2 mutations.
Identifiants
pubmed: 31643139
doi: 10.1002/ajmg.c.31746
doi:
Substances chimiques
Histone-Lysine N-Methyltransferase
EC 2.1.1.43
SETD2 protein, human
EC 2.1.1.43
Types de publication
Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
509-518Subventions
Organisme : NINDS NIH HHS
ID : R01 NS092772
Pays : United States
Organisme : Dandy-Walker Alliance
Pays : International
Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Brioude, F., Toutain, A., Giabicani, E., Cottereau, E., Cormier-Daire, V., & Netchine, I. (2019). Overgrowth syndromes-Clinical and molecular aspects and tumour risk. Nature Reviews. Endocrinology, 15(5), 299-311. https://doi.org/10.1038/s41574-019-0180-z
D'Avella, C., Abbosh, P., Pal, S. K., & Geynisman, D. M. (2018). Mutations in renal cell carcinoma. Urologic Oncology, 18, 30436-30438. https://doi.org/10.1016/j.urolonc.2018.10.027
Edmunds, J. W., Mahadevan, L. C., & Clayton, A. L. (2008). Dynamic histone H3 methylation during gene induction : HYPB/Setd2 mediates all H3K36 trimethylation. The EMBO Journal, 27(2), 406-420. https://doi.org/10.1038/sj.emboj.7601967
Gibson, W. T., Hood, R. L., Zhan, S. H., Bulman, D. E., Fejes, A. P., Moore, R., … Jones, S. J. M. (2012). Mutations in EZH2 cause Weaver syndrome. American Journal of Human Genetics, 90(1), 110-118. https://doi.org/10.1016/j.ajhg.2011.11.018
Hacker, K. E., Fahey, C. C., Shinsky, S. A., Chiang, Y.-C. J., DiFiore, J. V., Jha, D. K., … Rathmell, W. K. (2016). Structure/function analysis of recurrent mutations in SETD2 protein reveals a critical and conserved role for a SET domain residue in maintaining protein stability and histone H3 Lys-36 Trimethylation. The Journal of Biological Chemistry, 291(40), 21283-21295. https://doi.org/10.1074/jbc.M116.739375
Huang, K. K., McPherson, J. R., Tay, S. T., Das, K., Tan, I. B., Ng, C. C. Y., … Tan, P. (2016). SETD2 histone modifier loss in aggressive GI stromal tumours. Gut, 65(12), 1960-1972. https://doi.org/10.1136/gutjnl-2015-309482
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310-315. https://doi.org/10.1038/ng.2892
Kurotaki, N., Imaizumi, K., Harada, N., Masuno, M., Kondoh, T., Nagai, T., … Matsumoto, N. (2002). Haploinsufficiency of NSD1 causes Sotos syndrome. Nature Genetics, 30(4), 365-366. https://doi.org/10.1038/ng863
Lumish, H. S., Wynn, J., Devinsky, O., & Chung, W. K. (2015). Brief report: SETD2 mutation in a child with autism, intellectual disabilities and epilepsy. Journal of Autism and Developmental Disorders, 45(11), 3764-3770. https://doi.org/10.1007/s10803-015-2484-8
Luscan, A., Laurendeau, I., Malan, V., Francannet, C., Odent, S., Giuliano, F., … Cormier-Daire, V. (2014). Mutations in SETD2 cause a novel overgrowth condition. Journal of Medical Genetics, 51(8), 512-517. https://doi.org/10.1136/jmedgenet-2014-102402
Moffitt, A. B., Ondrejka, S. L., McKinney, M., Rempel, R. E., Goodlad, J. R., Teh, C. H., … Dave, S. S. (2017). Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. The Journal of Experimental Medicine, 214(5), 1371-1386. https://doi.org/10.1084/jem.20160894
Nagai, T., Matsumoto, N., Kurotaki, N., Harada, N., Niikawa, N., Ogata, T., … Naritomi, K. (2003). Sotos syndrome and haploinsufficiency of NSD1: Clinical features of intragenic mutations and submicroscopic deletions. Journal of Medical Genetics, 40(4), 285-289. https://doi.org/10.1136/jmg.40.4.285
O'Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., … Eichler, E. E. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246-250. https://doi.org/10.1038/nature10989
On Behalf of the ACMG Laboratory Quality Assurance Committee, Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-423. https://doi.org/10.1038/gim.2015.30
Parker, H., Rose-Zerilli, M. J. J., Larrayoz, M., Clifford, R., Edelmann, J., Blakemore, S., … Strefford, J. C. (2016). Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia. Leukemia, 30(11), 2179-2186. https://doi.org/10.1038/leu.2016.134
Priolo, M., Schanze, D., Tatton-Brown, K., Mulder, P. A., Tenorio, J., Kooblall, K., … Hennekam, R. C. (2018). Further delineation of Malan syndrome. Human Mutation, 39(9), 1226-1237. https://doi.org/10.1002/humu.23563
Su, X., Zhang, J., Mouawad, R., Compérat, E., Rouprêt, M., Allanic, F., … Malouf, G. G. (2017). NSD1 inactivation and SETD2 mutation drive a convergence toward loss of function of H3K36 writers in clear cell renal cell carcinomas. Cancer Research, 77(18), 4835-4845. https://doi.org/10.1158/0008-5472.CAN-17-0143
Tatton-Brown, K., Cole, T. R., & Rahman, N. (1993). Sotos Syndrome. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, K. Stephens, & A. Amemiya (Éd.), GeneReviews®. Consulté à l'adresse. Seattle (WA): University of Washington, Seattle; 1993-2019. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK1479/
Tatton-Brown, K., Hanks, S., Ruark, E., Zachariou, A., Duarte, S. D. V., Ramsay, E., … Rahman, N. (2011). Germline mutations in the oncogene EZH2 cause weaver syndrome and increased human height. Oncotarget, 2(12), 1127-1133. https://doi.org/10.18632/oncotarget.385
Tatton-Brown, K., & Rahman, N. (2013). The NSD1 and EZH2 overgrowth genes, similarities and differences. American Journal of Medical Genetics, 163C(2), 86-91. https://doi.org/10.1002/ajmg.c.31359
Tatton-Brown, K., Seal, S., Ruark, E., Harmer, J., Ramsay, E., Del Vecchio Duarte, S., … Rahman, N. (2014). Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nature Genetics, 46(4), 385-388. https://doi.org/10.1038/ng.2917
Tatton-Brown, K., Zachariou, A., Loveday, C., Renwick, A., Mahamdallie, S., Aksglaede, L., … Rahman, N. (2018). The Tatton-Brown-Rahman syndrome: A clinical study of 55 individuals with de novo constitutive DNMT3A variants. Wellcome Open Research, 3, 46. https://doi.org/10.12688/wellcomeopenres.14430.1
Tessema, M., Rossi, M. R., Picchi, M. A., Yingling, C. M., Lin, Y., Ramalingam, S. S., & Belinsky, S. A. (2018). Common cancer-driver mutations and their association with abnormally methylated genes in lung adenocarcinoma from never-smokers. Lung Cancer (Amsterdam, Netherlands), 123, 99-106. https://doi.org/10.1016/j.lungcan.2018.07.011
Tlemsani, C., Luscan, A., Leulliot, N., Bieth, E., Afenjar, A., Baujat, G., … Burglen, L. (2016). SETD2 and DNMT3A screen in the Sotos-like syndrome French cohort. Journal of Medical Genetics, 53(11), 743-751. https://doi.org/10.1136/jmedgenet-2015-103638
van Rij, M. C., Hollink, I. H. I. M., Terhal, P. A., Kant, S. G., Ruivenkamp, C., van Haeringen, A., … van Belzen, M. J. (2018). Two novel cases expanding the phenotype of SETD2-related overgrowth syndrome. American Journal of Medical Genetics. Part A, 176(5), 1212-1215. https://doi.org/10.1002/ajmg.a.38666
Villani, A., Greer, M.-L. C., Kalish, J. M., Nakagawara, A., Nathanson, K. L., Pajtler, K. W., … Kratz, C. P. (2017). Recommendations for cancer surveillance in individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clinical Cancer Research, 23(12), e83-e90. https://doi.org/10.1158/1078-0432.CCR-17-0631
Wagner, E. J., & Carpenter, P. B. (2012). Understanding the language of Lys36 methylation at histone H3. Nature Reviews. Molecular Cell Biology, 13(2), 115-126. https://doi.org/10.1038/nrm3274