Solution structure, glycan specificity and of phenol oxidase inhibitory activity of Anopheles C-type lectins CTL4 and CTLMA2.
Amino Acid Sequence
Animals
Anopheles
/ metabolism
Calcium
/ metabolism
Conserved Sequence
Enzyme Inhibitors
/ pharmacology
Escherichia coli
/ metabolism
Insect Proteins
/ chemistry
Lectins, C-Type
/ chemistry
Monophenol Monooxygenase
/ antagonists & inhibitors
Polysaccharides
/ metabolism
Recombinant Proteins
/ metabolism
Solutions
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 10 2019
23 10 2019
Historique:
received:
12
07
2019
accepted:
27
09
2019
entrez:
25
10
2019
pubmed:
28
10
2019
medline:
30
10
2020
Statut:
epublish
Résumé
Malaria, the world's most devastating parasitic disease, is transmitted between humans by mosquitoes of the Anopheles genus. An. gambiae is the principal malaria vector in Sub-Saharan Africa. The C-type lectins CTL4 and CTLMA2 cooperatively influence Plasmodium infection in the malaria vector Anopheles. Here we report the purification and biochemical characterization of CTL4 and CTLMA2 from An. gambiae and An. albimanus. CTL4 and CTLMA2 are known to form a disulfide-bridged heterodimer via an N-terminal tri-cysteine CXCXC motif. We demonstrate in vitro that CTL4 and CTLMA2 intermolecular disulfide formation is promiscuous within this motif. Furthermore, CTL4 and CTLMA2 form higher oligomeric states at physiological pH. Both lectins bind specific sugars, including glycosaminoglycan motifs with β1-3/β1-4 linkages between glucose, galactose and their respective hexosamines. Small-angle x-ray scattering data supports a compact heterodimer between the CTL domains. Recombinant CTL4/CTLMA2 is found to function in vivo, reversing the enhancement of phenol oxidase activity in dsCTL4-treated mosquitoes. We propose these molecular features underline a common function for CTL4/CTLMA2 in mosquitoes, with species and strain-specific variation in degrees of activity in response to Plasmodium infection.
Identifiants
pubmed: 31645596
doi: 10.1038/s41598-019-51353-z
pii: 10.1038/s41598-019-51353-z
pmc: PMC6811590
doi:
Substances chimiques
Enzyme Inhibitors
0
Insect Proteins
0
Lectins, C-Type
0
Polysaccharides
0
Recombinant Proteins
0
Solutions
0
Monophenol Monooxygenase
EC 1.14.18.1
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15191Subventions
Organisme : NIAID NIH HHS
ID : R01 AI139060
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM114358
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI070077
Pays : United States
Références
mBio. 2017 Oct 17;8(5):
pubmed: 29042500
Biochem J. 2011 Sep 15;438(3):475-83
pubmed: 21663594
Biophys J. 2000 Mar;78(3):1606-19
pubmed: 10692345
Nucleic Acids Res. 2015 Jan;43(Database issue):D707-13
pubmed: 25510499
J Biol Chem. 2007 Jun 8;282(23):17250-8
pubmed: 17420244
Curr Opin Insect Sci. 2015 Oct 1;11:47-55
pubmed: 26688791
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):244-9
pubmed: 21173248
J Innate Immun. 2014;6(2):169-81
pubmed: 23988482
Protein Sci. 2019 Feb;28(2):454-463
pubmed: 30371978
J Biol Chem. 2009 Aug 7;284(32):21229-40
pubmed: 19502234
J Biol Chem. 2005 Jan 14;280(2):1327-35
pubmed: 15509576
Science. 2013 May 24;340(6135):984-7
pubmed: 23661646
PLoS Pathog. 2006 Jun;2(6):e52
pubmed: 16789837
J Innate Immun. 2016;8(2):129-42
pubmed: 26580547
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37
pubmed: 27322406
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16817-22
pubmed: 20826443
Biochemistry. 2017 Feb 21;56(7):907-918
pubmed: 28072517
J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
PLoS Negl Trop Dis. 2015 Oct 16;9(10):e0004120
pubmed: 26474304
Cell. 2004 Mar 5;116(5):661-70
pubmed: 15006349
Immunol Rev. 1998 Jun;163:19-34
pubmed: 9700499
Science. 2009 Oct 2;326(5949):147-50
pubmed: 19797663
Biochemistry. 1997 Feb 4;36(5):979-88
pubmed: 9033386
EMBO Rep. 2006 Dec;7(12):1285-9
pubmed: 17099691
Annu Rev Biochem. 1995;64:113-39
pubmed: 7574477
BMC Genomics. 2010 Sep 30;11:531
pubmed: 20920294
PLoS Pathog. 2011 Apr;7(4):e1002023
pubmed: 21533217
Cell Microbiol. 2006 Sep;8(9):1392-405
pubmed: 16922859
Curr Opin Struct Biol. 2015 Oct;34:26-34
pubmed: 26163333
J Biol Chem. 2009 Jun 26;284(26):17616-24
pubmed: 19380589
PLoS Pathog. 2006 Dec;2(12):e133
pubmed: 17196037
Cell Host Microbe. 2009 Mar 19;5(3):273-84
pubmed: 19286136
J Biol Chem. 2007 Aug 31;282(35):25376-84
pubmed: 17597060
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346
pubmed: 27630371
Histochem Cell Biol. 2017 Feb;147(2):223-237
pubmed: 27999992
Biochemistry. 2014 Sep 9;53(35):5700-9
pubmed: 25121780
Nat Struct Mol Biol. 2004 Jul;11(7):591-8
pubmed: 15195147
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1957-62
pubmed: 22623529
Nucleic Acids Res. 2016 Jul 8;44(W1):W424-9
pubmed: 27151198
J Biol Chem. 2001 Aug 3;276(31):28939-45
pubmed: 11384997
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7230-4
pubmed: 11404471
Science. 2009 Apr 10;324(5924):258-61
pubmed: 19264986
Science. 2004 Mar 26;303(5666):2030-2
pubmed: 15044804