Identification of strontium in the merger of two neutron stars.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
10 2019
Historique:
received: 08 02 2018
accepted: 14 08 2019
entrez: 25 10 2019
pubmed: 28 10 2019
medline: 28 10 2019
Statut: ppublish

Résumé

Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements

Identifiants

pubmed: 31645733
doi: 10.1038/s41586-019-1676-3
pii: 10.1038/s41586-019-1676-3
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

497-500

Références

Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).
doi: 10.1103/RevModPhys.29.547
Siegel, D. M., Barnes, J. & Metzger, B. D. Collapsars as a major source of r-process elements. Nature 569, 241–244 (2019).
doi: 10.1038/s41586-019-1136-0 pubmed: 31068724
Lattimer, J. M., Mackie, F., Ravenhall, D. G. & Schramm, D. N. The decompression of cold neutron star matter. Astrophys. J. 213, 225–233 (1977).
doi: 10.1086/155148
Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).
doi: 10.1038/340126a0
Freiburghaus, C., Rosswog, S. & Thielemann, F.-K. R-process in neutron star mergers. Astrophys. J. 525, L121–L124 (1999).
doi: 10.1086/312343 pubmed: 10525469
Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).
doi: 10.3847/0004-637X/830/2/93
Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).
doi: 10.1111/j.1365-2966.2010.16864.x
Barnes, J. & Kasen, D. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18 (2013).
doi: 10.1088/0004-637X/775/1/18
Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).
doi: 10.1038/nature12505 pubmed: 23912055
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
doi: 10.1103/PhysRevLett.119.161101 pubmed: 29099225
Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).
doi: 10.1038/nature24298 pubmed: 29094694
Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).
doi: 10.1038/nature24303 pubmed: 29094693
Baade, W. & Zwicky, F. Cosmic rays from supernovae. Proc. Natl Acad. Sci. USA 20, 259–263 (1934).
doi: 10.1073/pnas.20.5.259 pubmed: 16587882
Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113 (2013).
doi: 10.1088/0004-637X/775/2/113
Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).
doi: 10.1038/nature24453 pubmed: 29094687
Sneden, C., Bean, J., Ivans, I., Lucatello, S. & Sobeck, J. MOOG: LTE line analysis and spectrum synthesis. Astrophysics Source Code Library https://www.as.utexas.edu/~chris/moog.html (2012).
Kerzendorf, W. E. & Sim, S. A. A spectral synthesis code for rapid modelling of supernovae. Mon. Not. R. Astron. Soc. 440, 387–404 (2014).
doi: 10.1093/mnras/stu055
Lodders, K., Palme, H. & Gail, H.-P. in Solar System: Landolt Börnstein Group VI Astronomy and Astrophysics Vol. 4B (ed. Trümper, J. E.) 712 (Springer, 2009).
Bisterzo, S., Travaglio, C., Gallino, R., Wiescher, M. & Käppeler, F. Galactic chemical evolution and solar s-process abundances: dependence on the
doi: 10.1088/0004-637X/787/1/10
Honda, S., Aoki, W., Ishimaru, Y. & Wanajo, S. Neutron-capture elements in the very metal-poor star HD 88609: another star with excesses of light neutron-capture elements. Astrophys. J. 666, 1189–1197 (2007).
doi: 10.1086/520034
Sneden, C. et al. Evidence of multiple r-process sites in the early galaxy: new observations of CS 22892–052. Astrophys. J. 533, L139–L142 (2000).
doi: 10.1086/312631 pubmed: 10770709
Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).
doi: 10.1088/0004-637X/774/1/25
Jeffery, D. J. & Branch, D. in Supernovae, Jerusalem Winter School for Theoretical Physics Vol. 6 (eds Wheeler, J. C., Piran, T. & Weinberg, S.) 149 (World Scientific, 1990).
Kurucz, R. L. Including all the lines: data releases for spectra and opacities. Can. J. Phys. 95, 825–827 (2017).
doi: 10.1139/cjp-2016-0794
Wanajo, S. et al. Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys. J. 789, L39 (2014).
doi: 10.1088/2041-8205/789/2/L39
Just, O., Bauswein, A., Pulpillo, R. A., Goriely, S. & Janka, H.-T. Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448, 541–567 (2015).
doi: 10.1093/mnras/stv009
Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).
doi: 10.1126/science.aaq0049 pubmed: 29038375
Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, L27 (2017).
doi: 10.3847/2041-8213/aa90b6
Hansen, C. J., Montes, F. & Arcones, A. How many nucleosynthesis processes exist at low metallicity? Astrophys. J. 797, 123 (2014).
doi: 10.1088/0004-637X/797/2/123
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).
doi: 10.1038/217709a0
Sneden, C., Lawler, J. E., Cowan, J. J., Ivans, I. I. & Den Hartog, E. A. New rare earth element abundance distributions for the Sun and five r-process-rich very metal-poor stars. Astrophys. J. 182 (Suppl.), 80–96 (2009).
doi: 10.1088/0067-0049/182/1/80
Sneden, C. et al. The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis. Astrophys. J. 591, 936–953 (2003).
doi: 10.1086/375491
MOOG spectral synthesis code. https://www.as.utexas.edu/~chris/moog.html (C. Sneden, 2017).
Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. https://arxiv.org/abs/astro-ph/0405087 (2004).
Biémont, E. & Quinet, P. Recent advances in the study of lanthanide atoms and ions. Physica Scripta T105, 38 (2003).
doi: 10.1238/Physica.Topical.105a00038
Den Hartog, E. A., Lawler, J. E., Sneden, C. & Cowan, J. J. Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the Sun and three metal-poor stars. Astrophys. J. 148 (Suppl.), 543–566 (2003).
doi: 10.1086/376940
Lawler, J. E., Bonvallet, G. & Sneden, C. Experimental radiative lifetimes, branching fractions, and oscillator strengths for La II and a new determination of the solar lanthanum abundance. Astrophys. J. 556, 452–460 (2001).
doi: 10.1086/321549
Lawler, J. E., Wickliffe, M. E., den Hartog, E. A. & Sneden, C. Improved laboratory transition parameters for Eu II and application to the solar europium elemental and isotopic composition. Astrophys. J. 563, 1075–1088 (2001).
doi: 10.1086/323407
Lawler, J. E., Wickliffe, M. E., Cowley, C. R. & Sneden, C. Atomic transition probabilities in Tb II with applications to solar and stellar spectra. Astrophys. J. 137 (Suppl.), 341–349 (2001).
doi: 10.1086/323001
Lawler, J. E., Den Hartog, E. A., Sneden, C. & Cowan, J. J. Improved laboratory transition probabilities for Sm II and application to the samarium abundances of the Sun and three r-process-rich, metal-poor stars. Astrophys. J. 162 (Suppl.), 227–260 (2006).
doi: 10.1086/498213
McCully, C. et al. The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys. J. 848, L32 (2017).
doi: 10.3847/2041-8213/aa9111
Chornock, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. Astrophys. J. 848, L19 (2017).
doi: 10.3847/2041-8213/aa905c
Sneden, C., Cowan, J. J. & Gallino, R. in Chemical Abundances in the Universe: Connecting First Stars to Planets Vol. 265 (eds Cunha, K., Spite, M. & Barbuy, B.) 46–53 (IAU Symposium, 2010).
Kurucz line list. http://kurucz.harvard.edu/linelists/gfnew/gfall08oct17.dat .
Tanaka, M. et al. Properties of kilonovae from dynamical and post-merger ejecta of neutron star mergers. Astron. Astrophys. 852, 109 (2018).
Karp, A. H., Lasher, G., Chan, K. L. & Salpeter, E. E. The opacity of expanding media—the effect of spectral lines. Astrophys. J. 214, 161 (1977).
doi: 10.1086/155241
Shappee, B. J. et al. Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358, 1574–1578 (2017).
doi: 10.1126/science.aaq0186 pubmed: 29038374
Waxman, E., Ofek, E., Kushnir, D. & Gal-Yam, A. Constraints on the ejecta of the GW170817 neutron-star merger from its electromagnetic emission. Mon. Not. R. Astron. Soc. 481, 3423–3441 (2018).
doi: 10.1093/mnras/sty2441
Pinto, P. A. & Eastman, R. G. The physics of type IA supernova light curves. II. Opacity and diffusion. Astrophys. J. 530, 757–776 (2000).
doi: 10.1086/308380
Newville, M. et al. Lmfit: non-linear least-square minimization and curve-fitting for Python. Astrophysics Source Code Library https://zenodo.org/record/11813#.XX-EoS3MxuU (2016).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacific 125, 306 (2013).
doi: 10.1086/670067
Tanaka, M. et al. Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publ. Astron. Soc. Japan 69, 102 (2017).
Perego, A. et al. Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443, 3134–3156 (2014).
doi: 10.1093/mnras/stu1352

Auteurs

Darach Watson (D)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. darach@nbi.ku.dk.
Cosmic Dawn Center (DAWN), Copenhagen, Denmark. darach@nbi.ku.dk.

Camilla J Hansen (CJ)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Max-Planck-Institut für Astronomie, Heidelberg, Germany.

Jonatan Selsing (J)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Cosmic Dawn Center (DAWN), Copenhagen, Denmark.

Andreas Koch (A)

Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Heidelberg, Germany.

Daniele B Malesani (DB)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Cosmic Dawn Center (DAWN), Copenhagen, Denmark.
DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark.

Anja C Andersen (AC)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Johan P U Fynbo (JPU)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Cosmic Dawn Center (DAWN), Copenhagen, Denmark.

Almudena Arcones (A)

Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany.
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.

Andreas Bauswein (A)

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
Heidelberger Institut für Theoretische Studien, Heidelberg, Germany.

Stefano Covino (S)

Istituto Nazionale di Astrofisica (INAF)/Brera Astronomical Observatory, Merate, Lecco, Italy.

Aniello Grado (A)

INAF/Osservatorio Astronomico di Capodimonte (OACN), Naples, Italy.

Kasper E Heintz (KE)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Cosmic Dawn Center (DAWN), Copenhagen, Denmark.
Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Reykjavík, Iceland.

Leslie Hunt (L)

INAF/Osservatorio Astrofisico di Arcetri, Firenze, Italy.

Chryssa Kouveliotou (C)

Department of Physics, The George Washington University, Washington, DC, USA.
Astronomy, Physics and Statistics Institute of Sciences (APSIS), Washington, DC, USA.

Giorgos Leloudas (G)

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark.

Andrew J Levan (AJ)

Department of Physics, University of Warwick, Coventry, UK.
Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands.

Paolo Mazzali (P)

Astrophysics Research Institute, Liverpool John Moores University, Liverpool, UK.
Max-Planck Institute for Astrophysics, Garching, Germany.

Elena Pian (E)

INAF, Astrophysics and Space Science Observatory, Bologna, Italy.

Classifications MeSH