Shift in size of bumblebee queens over the last century.
Bergmann's rule
body size
bumblebees
genetic structure
global change
habitat fragmentation
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
16
03
2019
accepted:
24
10
2019
pubmed:
31
10
2019
medline:
20
3
2020
entrez:
31
10
2019
Statut:
ppublish
Résumé
Species can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century. Based on historical and contemporary databases, we first tested if queen body sizes changed during the last century at the intraspecific level among four common bumblebee species and if it could be linked to global warming and/or habitat fragmentation as well as by the replacement by individuals from new populations. Then, we assessed body size changes at the community level, among 22 species, taking into account species population trends (i.e. increasing, stable or decreasing relative abundance). Our results show that the average queen body size of all four bumblebee species increased over the last century. This size increase was significantly correlated to global warming and habitat fragmentation, but not explained by changes in the population genetic structure (i.e. colonization). At the community level, species with stable or increasing relative abundance tend to be larger than declining species. Contrary to theoretical expectations from Bergmann's rule (i.e. increasing body size in colder climates), temperature does not seem to be the main driver of bumblebee body size during the last century as we observed the opposite body size trend. However, agricultural intensification and habitat fragmentation could be alternative mechanisms that shape body size clines. This study stresses the importance of considering alternative global change factors when assessing body size change.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1185-1195Subventions
Organisme : Fonds de la Recherche Scientifique - FNRS
Pays : International
Organisme : Research Foundation-Flanders (FWO) under EOS Project named CLIPS
ID : 3094785
Pays : International
Organisme : Belgian Science Policy
Pays : International
Organisme : Research Foundation-Flanders (FWO research project)
ID : 3G042618
Pays : International
Organisme : Fonds pour la Recherche dans l'Industrie et l'Agriculture
Pays : International
Informations de copyright
© 2019 John Wiley & Sons Ltd.
Références
Ashley, M. V., Caballero, I. C., Chaovalitwongse, W., Dasgupta, B., Govindan, P., Sheikh, S. I., & Berger-wolf, T. Y. (2009). Kinalyzer, a computer program for reconstructing sibling groups. Molecular Ecology Resources, 9, 1127-1131. https://doi.org/10.1111/j.1755-0998.2009.02562.x
Azevedo, R. B. R., French, V., & Partridge, L. (2002). Temperature modulates epidermal cell size in Drosophila melanogaster. Journal of Insect Physiology, 48, 231-237. https://doi.org/10.1016/S0022-191000168-8
Beasley, D. E., Penick, C. A., Boateng, N. S., Menninger, H. L., & Dunn, R. R. (2018). Urbanization disrupts latitude-size rule in 17-year cicadas. Ecology and Evolution, 8, 2534-2541. https://doi.org/10.1002/ece3.3879
Bishop, J. A., & Armbruster, W. S. (1999). Thermoregulatory abilities of Alaskan bees: Effects of size, phylogeny and ecology. Functional Ecology, 13, 711-724. https://doi.org/10.1046/j.1365-2435.1999.00351.x
Bonner, J. T. (2006). Why size matters. Princeton, NJ: Princeton University Press.
Bowden, J. J., Eskildsen, A., Hansen, R. R., Olsen, K., Kurle, C. M., & Hoye, T. T. (2015). High-Arctic butterflies become smaller with rising temperatures. Biology Letters, 11, 20150574. https://doi.org/10.1098/rsbl.2015.0574
Brans, K. I., Govaert, L., Engelen, J. M., Gianuca, A. T., Souffreau, C., & De Meester, L. (2017). Eco-evolutionary dynamics in urbanized landscapes: Evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160030. https://doi.org/10.1098/rstb.2016.0030
Brans, K. I., Jansen, M., Vanoverbeke, J., Tüzün, N., Stoks, R., & De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global Change Biology, 23, 5218-5227. https://doi.org/10.1111/gcb.13784
Cane, J. H. (1987). Estimation of bee size using intertegular span (Apoidea). Journal of the Kansas Entomological Society, 60, 145-147.
CEC. (1998). Evaluation of agri-environment programmes, State of Application of Regulation (EEC) No. 2078/92. DGVI Working Document, VI/76555/98.
Christians, C. (1998). Quarante ans de politique Agricole européenne commune et d’agriculture en Belgique. Bulletin De La Société Géographique De Liège, 35, 41-55.
Classen, A., Steffan-Dewenter, I., Kindeketa, W. J., & Peters, M. K. (2017). Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Functional Ecology, 31, 768-777. https://doi.org/10.1111/1365-2435.12786
Core Team, R. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Couvillon, M. J., & Dornhaus, A. (2009) Location, location, location: Larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proceedings of the Royal Society of London Series B, Biological Sciences, 276, 2411-2418. https://doi.org/10.1098/rspb.2009.0172
Cushman, J. H., Lawton, J. H., & Manly, B. F. J. (1993). Latitudinal patterns in European ant assemblages: Variation in species richness and body size. Oecologia, 95, 30-37. https://doi.org/10.1007/BF00649503
Dellicour, S., Gérard, M., Prunier, J. G., Dewulf, A., Kuhlmann, M., & Michez, D. (2017). Distribution and predictors of wing shape and size variability in three sister species of solitary bees. PLoS ONE, 3, e0173109. https://doi.org/10.1371/journal.pone.0173109
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., Collen, B. (2014). Defaunation in the Anthropocene. Science, 345, 401-406. https://doi.org/10.1126/science.1179504
Drossart, M., Michez, D., & Vanderplanck, M. (2017). Invasive plants as potential food resource for native pollinators: A case study with two invasive species and a generalist bumble bee. Scientific Reports, 7, 16242. https://doi.org/10.1038/s41598-017-16054-5
Earl, D. A., & von Holdt, B. M. (2012). Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conservation Genetic Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
European Environment Agency.(2011). Landscape fragmentation in Europe, 88pp.
Evanno, G., Regnauts, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Ford, K. R., Harrington, C. A., Bansal, S., Gould, P. J., & Clair, B. S. (2016). Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Global Change Biology, 22, 3712-3723. https://doi.org/10.1111/gcb.13328
Fuchs, R., Herold, M., Verburg, P. H., & Clevers, J. G. P. W. (2013). A high-resolution and harmonized model approach for reconstructing an analysing historic land changes in Europe. Biogeosciences, 10, 1543-1559. https://doi.org/10.5194/bg-10-1543-2013
Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W., & Eberle, J. (2015). Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biology, 21, 299-313. https://doi.org/10.1111/gcb.12714
Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B., 365, 547-556. https://doi.org/10.1098/rstb.2009.0267
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26, 285-291. https://doi.org/10.1016/j.tree.2011.03.005
Gérard, M., Michez, D., Debat, V., Fullgrabe, L., Meeus, I., Piot, N., … Vanderplanck, M. (2018). Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings. Scientific Reports, 8, 15169. https://doi.org/10.1038/s41598-018-33429-4
Gérard, M., Vanderplanck, M., Franzen, M., Kuhlmann, M., Potts, G. S., Rasmont, P., … Michez, D. (2018). Patterns of size variation in bees at a continental scale: Does Bergmann’s rule apply? Oikos, 127, 1095-1103. https://doi.org/10.1111/oik.05260
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., & Merila, J. (2008). Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology, 17, 167-178. https://doi.org/10.1111/j.1365-294X.2007.03413.x
Goudet, J. (2001). Fstat: A program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet, J (1995): Fstat (version 1.2): A computer program to calculate F - Statistics. Journal of Heredity, 86, 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957. https://doi.org/10.1126/science.1255957
Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T., & Jauker, F. (2018). Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nature Ecology & Evolution, 2, 1408-1417. https://doi.org/10.1038/s41559-018-0631-2
Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153, 589-596. https://doi.org/10.1007/s00442-007-0752-9
Grether, G. F. (2005). Environmental change, phenotypic plasticity and genetic compensation. The American Naturalist, 166, 115-123. https://doi.org/10.1086/432023
Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162. https://doi.org/10.2307/5591
Hawkins, B. A. (1995). Latitudinal body-size gradients for the bees of the eastern United States. Ecological Entomology, 20, 195-198. https://doi.org/10.1111/j.1365-2311.1995.tb00446.x
Hesselbarth, M. H. K., Sciaini, M., Nowosad, J., & Hanss, S. (2019). Landscapemetrics: Landscape metrics for categorical map patterns. R package version 1.1. Retrieved from https://CRAN.R-project.org/package=landscapemetrics
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12, 450-455. https://doi.org/10.1111/j.1365-2486.2006.01116.x
Horne, C. R., Hirst, A. G., & Atkinson, D. (2015). Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 18, 327-335. https://doi.org/10.1111/ele.12413
Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D., & Serra, L. (2000). Rapid evolution of a geographic cline in size in an introduced fly. Science, 287, 308-309. https://doi.org/10.1101/550319
Inoue, M. I., & Yokoyama, J. (2006). Morphological variation in relation to flower use in bumblebees. Entomological Science, 9, 147-159. https://doi.org/10.1111/j.1479-8298.2006.00162.x
IPCC. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 1535 pp.
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
Jauker, F., Speckmann, M., & Wolters, V. (2016). Intra-specific body size determines pollination effectiveness. Basic and Applied Ecology, 17, 714-719. https://doi.org/10.1016/j.baae.2016.07.004
Kerr, J. T., Pindar, A., Galpern, P., Packer, L., Potts, S. G., Roberts, S. M., … Pantoja, A. (2015). Climate change impacts on bumblebees converge across continents. Science, 349, 177-180. https://doi.org/10.1126/science.aaa7031
Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature and fitness: Three rules. Evolutionary Ecology Research, 10, 251-268.
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. https://doi.org/10.1098/rspb.2006.3721
Maebe, K., Meeus, I., Ganne, M., De Meulemeester, T., Biesmeijer, K., & Smagghe, G. (2015). Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS ONE, 10, e0127870. https://doi.org/10.1371/journal.pone.0127870
Maebe, K., Meeus, I., Maharramov, J., Grootaert, P., Michez, D., Rasmont, P., & Smagghe, G. (2013). Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus. Apidologie, 44(2), 188-197. https://doi.org/10.1007/s13592-012-0170-9
Maebe, K., Meeus, I., Vray, S., Claeys, T., Dekoninck, W., Boevé, J.-L., … Smagghe, G. (2016). A century of temporal stability of genetic diversity in wild bumblebees. Scientific Reports, 6, https://doi.org/10.1038/srep3829
McCabe, J., French, V., & Partridge, L. (1997). Joint regulation of cell size and cell number in the wing blade of Drosophila melanogaster. Genetics Research, 69, 61-68. https://doi.org/10.1017/S0016672397002620
McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology, 15, 320-331. https://doi.org/10.1046/j.1523-1739.2001.015002320.x
McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Retrieved from http://www.umass.edu/landeco/research/fragstats/fragstats.html
McNab, N. B. (2010). Geographic and temporal correlations of mammalian size reconsidered: A resource rule. Oecologia, 164, 13-23. https://doi.org/10.1007/s00442-010-1621-5
Merckx, T., Kaiser, A., & Van Dyck, H. (2018). Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Global Change Biology, 24, 3837-3848. https://doi.org/10.1111/gcb.14151
Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau, T., Bonte, D., … Van Dyck, H. (2018). Body-size shifts in aquatic and terrestrial urban communities. Nature, 558, 113. https://doi.org/10.1038/s41586-018-0140-0
Millien, V., Lyons, S. K., Olson, L., Smith, S. A., Wilson, A. B., & Yom-Tov, Y. (2006). Ecotypic variation in the context of global climate change revisiting the rules. Ecology Letters, 9, 853-869. https://doi.org/10.1111/j.1461-0248.2006.00928.x
Mommaerts, V., & Smagghe, G. (2011). Side-effects of pesticides on the pollinator Bombus: An overview. In M. Stoytcheva (Ed.), Pesticides in the modern world - Pests control and pesticides exposure and toxicity assessment (pp. 507-552). Croatia: In Tech Publishing. ISBN 978-953-307-457-3.
Müller, A., Diener, S., Schnyder, S., Stutz, K., Sedivy, C., & Dorn, S. (2006). Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee-flower relationships. Biological Conservation, 130, 604-615. https://doi.org/10.1016/j.biocon.2006.01.023
Nijhout, H. F. (2003). The control of body size in insects. Developmental Biology, 231, 1-9. https://doi.org/10.1016/S0012-1606(03)00276-8
Ohlberger, J. (2013). Climate warming and ectotherm body size-From individual physiology to community ecology. Functional Ecology, 27, 991-1001. https://doi.org/10.1111/1365-2435.12098
Ollerton, J. (2018). Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48, 353-376. https://doi.org/10.1146/annurev-ecolsys-110316-022919
Owen, R. E., & McCorquodale, D. B. (1994). Quantitative variation and heritability of postdiapause development time and body size in the alfalfa leaf cutting bee (Hymenoptera: Megachilidae). Annals of the Entomological Society of America, 87, 922-927. https://doi.org/10.1093/aesa/87.6.922
Peakall, R., & Smouse, F. (2006). GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Peat, J., Darvill, B., Ellis, J., & Goulson, D. (2005). Effects of climate on intra- and interspecific size variation in bumble-bees. Functional Ecology, 19, 145-151. https://doi.org/10.1111/j.0269-8463.2005.00946.x
Peters, M. K., Peisker, J., Steffan-Dewenter, I., & Hoiss, B. (2016). Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. Journal of Biogeography, 43(10), 2040-2049. https://doi.org/10.1111/jbi.12768
Peters, R. H. (1983). The ecological implications of body size. Cambridge, UK: Cambridge University Press.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Pyke, G. H. (1978). Optimal body size in bumblebees. Oecologia, 34, 255-266. https://doi.org/10.1007/BF00344905
Ramirez-Delgado, V. H., Sanabria-Urban, S., Serrano-Meneses, M. A., & Cueva Del Castillo, R. (2016). The converse to Bergmann’s rule in bumblebees, a phylogenetic approach. Ecology and Evolution, 6, 6160-6169. https://doi.org/10.1002/ece3.2321
Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., … Schweiger, O. (2015). Climatic risk and distribution atlas of European bumblebees. Biodiversity and Ecosystem Risk Assessment, 10, 1-236. https://doi.org/10.3897/biorisk.10.4749
Rasmont, P., Genoud, D., Gadoum, S., Aubert, M., Dufrène, E., Le Goff, G., … Pauly, A. (2017). Hymenoptera Apoidae Gallica: Liste des abeilles sauvages de Belgique, France, Luxembourg et Suisse. Editions Atlas Hymenoptera. Mons, Belgium: Université de Mons.
Rasmont, P., & Pauly, A. (2010).Les bourdons de la Belgique. In: Atlas Hymenoptera, Mons, Gembloux. Retrieved from http://www.atlashymenoptera.net/page.asp?xml:id=160
Roger, N., Moerman, R., Carvalheiro, L. G., Aguirre-Guitiérrez, J., Jacquemart, A.-L., Kleijn, D., … Michez, D. (2017). Impact of pollen resources drift on common bumblebees in NW Europe. Global Change Biology, 23, 68-76. https://doi.org/10.1111/gcb.13373
Romano, A., & Ficetola, G. F. (2010). Ecogeographic variation of body size in the spectacled salamanders (Salamandrina): Influence of genetic structure and local factors. Journal of Biogeography, 37, 2358-2370. https://doi.org/10.1111/j.1365-2699.2010.02369.x
Rosenberg, N. A. (2004). Distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
Roulston, T. H., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16, 49-65. https://doi.org/10.1023/A:1016048526475
Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G. T. J., Schaminée, J. H. J., … Kleijn, D. (2014). Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. Proceedings of the National Academy of Sciences of the United States of America, 111, 17552-17557. https://doi.org/10.1073/pnas.1412973111
Schleuning, M., Fründ, J., Schweiger, O., Welk, E., Albrecht, J., Albrecht, M., … Hof, C. (2016). Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communication, 7, 13965. https://doi.org/10.1038/ncomms13965
Scriven, J. J., Whitehorm, P. R., Goulson, D., & Tinsley, M. C. (2016). Bergmann’s body size rule operates in facultatively endothermic insects: Evidence from a complex of cryptic bumblebee species. PLoS ONE, 11(10), https://doi.org/10.1371/journal.pone.0163307
Steffan-Dewenter, I., Munzenberg, U., Bürger, C., Thies, C., & Tscharntke, T. (2002). Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83, 1421-1432. https://doi.org/10.2307/3071954
Strahan, R. T., Sanchez Meador, A. J., Huffman, D. W., & Laughlin, D. C. (2016). Shifts in community-level traits and functional diversity in a mixed conifer forest: A legacy of land-use change. Journal of Applied Ecology, 53, 1755-1765. https://doi.org/10.1111/1365-2664.12737
Tepedino, V. J., Thompson, R., & Torchio, P. F. (1984). Heritability for size in the Megachilid Bee Osmia lignaria propinqua Cresson. Apidologie, 15, 83-88. https://doi.org/10.1051/apido:19840108
The World Conservation Union. (2014). IUCN Red List of Threatened Species (2014).3.Summary Statistics for Globally Threatened Species.
Thompson, H. M. (2001). Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie, 32, 305-321. https://doi.org/10.1051/apido:2001131
Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W., & Hoffmann, A. A. (2005). A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science, 308, 691-693. https://doi.org/10.1126/science.1109523
Van der Steen, J. J. M. (1994). Method development for the determination of the contact LD50 of pesticides to bumblebees (Bombus terrestris L.). Apidologie, 25, 463-465.
Virgós, E., Kowalczyk, R., Trua, A., de Marinis, A., Mangas, J. G., Barea-Azcón, J. M., & Geffen, E. (2011). Body size clines in the European badger and the abundant centre hypothesis. Journal of Biogeography, 38, 1546-1556. https://doi.org/10.1111/j.1365-2699.2011.02512.x
Vray, S. (2018). Cent ans de déclin des bourdons en Belgique: Influence du climat et de l’occupation du sol. PhD thesis, UMons, 2018, 489 pp.
Vray, S., Rollin, O., Rasmont, P., Dufrêne, M., Michez, D., & Dendoncker, N. (2019). A century of local changes in bumblebee communities and landscape composition in Belgium. Journal of Insect Conservation, 23, 489-501. https://doi.org/10.1007/s10841-019-00139-9
Wang, J. L. (2004). Sibship reconstruction from genetic data with typing errors. Genetics, 166, 1963-1979. https://doi.org/10.1534/genetics.166.4.1963
Warzecha, D., Diekötter, T., Wolters, V., & Jauker, F. (2016). Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecology, 31, 1449-1455. https://doi.org/10.1007/s10980-016-0349-y
Werner, J., & Griebeler, E. M. (2011). Reproductive biology and its impact on body size: Comparative analysis of mammalian, avian and dinosaurian reproduction. PLoS ONE, 6, e28442. https://doi.org/10.1371/journal.pone.0028442
Whiterhorn, P. R., Norvill, G., Gilburn, A., & Goulson, D. (2018). Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ, 6, e4772. https://doi.org/10.7717/peerj.4772
Willmer, P. G., & Finlayson, K. (2014). Big bees do a Better Job: Intraspecific size variation influences pollination effectiveness. Journal of Pollination Ecology, 14, 244-254. https://doi.org/10.26786/1920-7603(2014)22