Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme.
DNAzymes
FANA
FANAzymes
XNA
xenonucleic acids
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
01 04 2020
01 04 2020
Historique:
received:
25
09
2019
revised:
31
10
2019
pubmed:
5
11
2019
medline:
18
5
2021
entrez:
5
11
2019
Statut:
ppublish
Résumé
The discovery of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that natural genetic polymers are not unique in their ability to function as enzymes. However, all known examples of in vitro selected XNA enzymes function with lower activity than their natural counterparts, suggesting that XNAs might be limited in their ability to fold into structures with high catalytic activity. To explore this problem, we evaluated the catalytic potential of FANAzyme 12-7, an RNA-cleaving catalyst composed entirely of 2'-fluoroarabino nucleic acid (FANA) that was evolved to cleave RNA at a specific phosphodiester bond located between an unpaired guanine and a paired uracil in the substrate recognition arm. Here, we show that this activity extends to chimeric DNA substrates that contain a central riboguanosine (riboG) residue at the cleavage site. Surprisingly, FANAzyme 12-7 rivals known DNAzymes that were previously evolved to cleave chimeric DNA substrates under physiological conditions. These data provide convincing evidence that FANAzyme 12-7 maintains the catalytic potential of equivalent DNAzymes, which has important implications for the evolution of XNA catalysts and their contributions to future applications in synthetic biology.
Identifiants
pubmed: 31680396
doi: 10.1002/cbic.201900596
doi:
Substances chimiques
2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid
0
Arabinonucleotides
0
DNA, Catalytic
0
Polymers
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1001-1006Informations de copyright
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
J. F. Atkins, R. F. Gesteland, T. R. Cech, RNA Worlds, Cold Spring Harbor Laboratory, 2011.
R. R. Breaker, G. F. Joyce, Chem. Biol. 1994, 1, 223;
R. R. Breaker, G. F. Joyce, Chem. Biol. 1995, 2, 655.
S. K. Silverman, Trends Biochem. Sci. 2016, 41, 595.
S. W. Santoro, G. F. Joyce, Proc. Natl. Acad. Sci. USA 1997, 94, 4262;
S. W. Santoro, G. F. Joyce, Biochemistry 1998, 37, 13330.
A. A. Fokina, D. A. Stetsenko, J. C. Francois, Expert Opin. Biol. Ther. 2015, 15, 689;
N. Krug, J. M. Hohlfeld, A.-M. Kirsten, O. Kornmann, K. M. Beeh, D. Kappeler, S. Korn, S. Ignatenko, W. Timmer, C. Rogon, et al., N Engl. J. Med. 2015, 372, 1987;
H. Cai, F. S. Santiago, L. Prado-Lourenco, B. Wang, M. Patrikakis, M. P. Davenport, G. J. Maghzal, R. Stocker, C. R. Parish, B. H. Chong, G. J. Lieschke, T.-W. Wong, C. N. Chesterman, D. J. Francis, F. J. Moloney, R. S. C. Barnetson, G. M. Halliday, L. M. Khachigian, Sci. Transl. Med. 2012, 4, 139ra82.
J. C. Chaput, H. Yu, S. Zhang, Chem. Biol. 2012, 19, 1360;
G. Houlihan, S. Arangundy-Franklin, P. Holliger, Curr. Opin. Biotechnol. 2017, 48, 168.
H. Yu, S. Zhang, J. C. Chaput, Nat. Chem. 2012, 4, 183;
V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders, S. Zhang, J. C. Chaput, J. Wengel, S.-Y. Peak-Chew, S. H. McLaughlin, P. Herdewijn, P. Holliger, Science 2012, 336, 341.
I. Alves Ferreira-Bravo, C. Cozens, P. Holliger, J. J. DeStefano, Nucleic Acids Res. 2015, 43, 9587;
H. Mei, J.-Y. Liao, R. M. Jimenez, Y. Wang, S. Bala, C. McCloskey, C. Switzer, J. C. Chaput, J. Am. Chem. Soc. 2018, 140, 5706;
A. E. Rangel, Z. Chen, T. M. Ayele, J. M. Heemstra, Nucleic Acids Res. 2018, 46, 8057;
E. Eremeeva, A. Fikatas, L. Margamuljana, M. Abramov, D. Schols, E. Groaz, P. Herdewijn, Nucleic Acids Res. 2019, 47, 4927.
A. I. Taylor, V. B. Pinheiro, M. J. Smola, A. S. Morgunov, S. Peak-Chew, C. Cozens, K. M. Weeks, P. Herdewijn, P. Holliger, Nature 2015, 518, 427.
Y. Wang, A. K. Ngor, A. Nikoomanzar, J. C. Chaput, Nat. Commun. 2018, 9, 5067.
M. Hollenstein, C. J. Hipolito, C. H. Lam, D. M. Perrin, ACS Comb. Sci. 2013, 15, 174.
M. Hollenstein, C. J. Hipolito, C. H. Lam, D. M. Perrin, ChemBioChem 2009, 10, 1988.
Y. Wang, E. Liu, C. H. Lam, D. M. Perrin, Chem. Sci. 2018, 9, 1813.
F. Guo, Z. Yue, M. Trajkovski, X. Zhou, D. Cao, Q. Li, B. Wang, X. Wen, J. Plavec, Q. Peng, Z. Xi, C. Zhou, J. Am. Chem. Soc. 2018, 140, 11893.
M. J. Damha, C. J. Wilds, A. Noronha, I. Brukner, G. Borkow, D. Arion, M. A. Parniak, J. Am. Chem. Soc. 1998, 120, 12976.
M. A. Carrigan, A. Ricardo, D. N. Ang, S. A. Benner, Biochemistry 2004, 43, 11446;
D. Faulhammer, M. Famulok, J. Mol. Biol. 1997, 269, 188;
C. R. Geyer, D. Sen, Chem. Biol. 1997, 4, 579.
S. Nakano, D. M. Chadalavada, P. C. Bevilacqua, Science 2000, 287, 1493;
S. Kath-Schorr, T. J. Wilson, N.-S. Li, J. Lu, J. A. Piccirilli, D. M. J. Lilley, J. Am. Chem. Soc. 2012, 134, 16717;
H. Liu, X. Yu, Y. Chen, J. Zhang, B. Wu, L. Zheng, P. Haruehanroengra, R. Wang, S. Li, J. Lin, J. Li, J. Sheng, Z. Huang, J. Ma, J. Gan, Nat. Commun. 2017, 8, 2006.
M. Liu, D. Chang, Y. Li, Acc. Chem. Res. 2017, 50, 2273.
G. J. Narlikar, D. Herschlag, Annu. Rev. Biochem. 1997, 66, 19.
A. K. Brown, J. Li, C. M. B. Pavot, Y. Lu, Biochemistry 2003, 42, 7152.
Z. Yang, K. Y. Loh, Y.-T. Chu, R. Feng, N. S. Reddy Satyavolu, M. Xiong, S. M. Nakamata Huynh, K. Hwang, L. Li, H. Xing, X. Zhang, Y. R. Chemla, M. Gruebele, Y. Lu, J. Am. Chem. Soc. 2018, 140, 17656.
J. A. Doudna, T. R. Cech, Nature 2002, 418, 222.
S.-F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu, Proc. Natl. Acad. Sci. USA 2015, 112, 5903.