Specific Signatures of Serum miRNAs as Potential Biomarkers to Discriminate Clinically Similar Neurodegenerative and Vascular-Related Diseases.
Aged
Alzheimer Disease
/ blood
Biomarkers
/ blood
Case-Control Studies
Dementia, Vascular
/ blood
Diagnosis, Differential
Exosomes
/ metabolism
Female
Gene Expression Profiling
Gene Expression Regulation
Humans
Logistic Models
Male
MicroRNAs
/ blood
Multivariate Analysis
Neurodegenerative Diseases
/ blood
Parkinson Disease
/ blood
ROC Curve
Reproducibility of Results
Vascular Diseases
/ blood
Alzheimer’s disease
Exosomes
Parkinson’s disease
Vascular dementia
Vascular parkinsonism
microRNAs
Journal
Cellular and molecular neurobiology
ISSN: 1573-6830
Titre abrégé: Cell Mol Neurobiol
Pays: United States
ID NLM: 8200709
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
19
06
2019
accepted:
25
10
2019
pubmed:
7
11
2019
medline:
29
12
2020
entrez:
7
11
2019
Statut:
ppublish
Résumé
Neurodegenerative diseases (NDs) are age-dependent; among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent. Similarly, cerebrovascular damage can induce the development of vascular-related disorders that share common features with AD and PD, respectively, named vascular dementia (VD) and vascular parkinsonism (VP). To date, ND diagnosis is mainly clinical; therefore, since these disorders show similar symptoms, their correct discrimination may be difficult. We detected 23 ND-associated microRNAs (miRNAs) by literature mining and investigated their serum expression in a cohort of 139 patients including AD, PD, VD, and VP patients and healthy controls. TaqMan RT-PCR data showed that miR-23a upregulation was associated with an ongoing neurodegenerative process, similar to miR-22* and miR-29a, while let-7d, miR-15b, miR-24, miR-142-3p, miR-181c, and miR-222 showed an altered expression in Parkinson-like phenotypes, as well as miR-34b, miR-125b, and miR-130b in Alzheimer-like disorders. By computing logistic regression models and ROC curves, we identified signatures of neuro-miRNAs specific for each disease, showing good diagnostic performance. Interestingly, we found that miR-23a, miR-29a, miR-34b, and miR-125b exhibited a different distribution between exosomes and vesicle-free serum, suggesting a heterogeneity of secretion for these miRNAs. Our results suggest that miRNA signatures could discriminate in a non-invasive manner neurodegenerative disorders, thus improving clinical diagnoses.
Identifiants
pubmed: 31691877
doi: 10.1007/s10571-019-00751-y
pii: 10.1007/s10571-019-00751-y
doi:
Substances chimiques
Biomarkers
0
MicroRNAs
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
531-546Références
Oncotarget. 2016 Nov 15;7(46):75353-75365
pubmed: 27683108
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003-8
pubmed: 21383194
Acta Neurol Scand. 2012 Jul;126(1):12-6
pubmed: 21916850
Lancet Neurol. 2014 Aug;13(8):788-94
pubmed: 25030513
Front Mol Biosci. 2017 Oct 04;4:66
pubmed: 29046875
Nat Rev Neurol. 2015 Jun;11(6):319-26
pubmed: 25917706
PLoS One. 2013 Jul 29;8(7):e69807
pubmed: 23922807
Sci Rep. 2018 May 30;8(1):8421
pubmed: 29849050
Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8
pubmed: 18663219
Alzheimers Dement. 2018 Apr;14(4):535-562
pubmed: 29653606
Expert Rev Mol Diagn. 2018 Jan;18(1):19-26
pubmed: 29200322
Lancet. 2015 Oct 24;386(10004):1698-706
pubmed: 26595643
PLoS One. 2012;7(3):e30679
pubmed: 22427800
Alzheimers Res Ther. 2017 Nov 09;9(1):89
pubmed: 29121998
F1000 Biol Rep. 2011;3:15
pubmed: 21876726
J Neurosci Res. 2014 Aug;92(8):1071-7
pubmed: 24648008
Handb Clin Neurol. 2008;89:207-16
pubmed: 18631745
J Neurotrauma. 2014 Jan 1;31(1):19-25
pubmed: 23865516
Mov Disord. 2013 Jan;28(1):31-40
pubmed: 23390095
Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006189
pubmed: 22229116
Eur J Clin Nutr. 2015 Jun;69(6):729-33
pubmed: 25514902
Dialogues Clin Neurosci. 2009;11(2):111-28
pubmed: 19585947
BMJ. 2009 Feb 05;338:b158
pubmed: 19196745
J Biotechnol. 2011 Mar 20;152(3):96-101
pubmed: 21295623
J Alzheimers Dis. 2014;42(4):1261-7
pubmed: 25024331
Alzheimer Dis Assoc Disord. 2014 Jul-Sep;28(3):206-18
pubmed: 24632990
Front Cell Neurosci. 2016 Mar 01;10:51
pubmed: 26973465
Eur Neuropsychopharmacol. 2015 May;25(5):713-24
pubmed: 23642796
J Cell Physiol. 2016 Jan;231(1):25-30
pubmed: 26031493
Acta Neuropathol. 2011 Dec;122(6):737-45
pubmed: 21959586
Mol Brain. 2015 Jul 25;8:44
pubmed: 26205656
Nat Rev Clin Oncol. 2011 Jun 07;8(8):467-77
pubmed: 21647195
Methods Mol Biol. 2018;1733:79-85
pubmed: 29435924
Am J Physiol Heart Circ Physiol. 2012 Nov 1;303(9):H1085-95
pubmed: 22942181
Mol Neurobiol. 2001 Aug-Dec;24(1-3):87-97
pubmed: 11831556
Clin Biochem. 2013 Jul;46(10-11):846-60
pubmed: 23562576
J Extracell Vesicles. 2014 Mar 26;3:
pubmed: 24683445
Cold Spring Harb Perspect Med. 2012 Jun;2(6):a008870
pubmed: 22675666
Neurology. 1998 Sep;51(3):728-33
pubmed: 9748017
Neurology. 1993 Feb;43(2):250-60
pubmed: 8094895
Annu Rev Pathol. 2006;1:151-70
pubmed: 18039111
J Parkinsons Dis. 2012;2(4):321-31
pubmed: 23938262
J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76
pubmed: 18344392
Neural Plast. 2017;2017:7027380
pubmed: 28770113
Front Neurol. 2018 Mar 23;9:156
pubmed: 29628907
Nat Cell Biol. 2007 Jun;9(6):654-9
pubmed: 17486113
Neurol Sci. 2016 Apr;37(4):591-5
pubmed: 26820655
Front Neurol. 2018 Jun 15;9:411
pubmed: 29962998
Front Cell Neurosci. 2014 Jun 10;8:156
pubmed: 24959119
Clin Sci (Lond). 2017 Jun 1;131(11):1059-1068
pubmed: 28515342
Exp Neurol. 2012 Jun;235(2):491-6
pubmed: 22155483
Genomics Proteomics Bioinformatics. 2015 Feb;13(1):17-24
pubmed: 25724326
Neuron. 2013 Nov 20;80(4):844-66
pubmed: 24267647
Med Chem. 2016;12(3):217-25
pubmed: 26527155
Expert Rev Mol Diagn. 2015 Mar;15(3):339-48
pubmed: 25634383
Ulster Med J. 2014 May;83(2):93-102
pubmed: 25075138
Nucleic Acids Res. 2011 Sep 1;39(16):7223-33
pubmed: 21609964
J Neurol Sci. 2014 Jan 15;336(1-2):52-6
pubmed: 24139697