czcD gene from Bacillus megaterium and Microbacterium liquefaciens as a potential nickel-vanadium soil pollution biomarker.
Bacillus megaterium
Microbacterium liquefaciens
biomarkers
czcD
nickel-vanadium resistance
Journal
Journal of basic microbiology
ISSN: 1521-4028
Titre abrégé: J Basic Microbiol
Pays: Germany
ID NLM: 8503885
Informations de publication
Date de publication:
Jan 2020
Jan 2020
Historique:
received:
22
07
2019
accepted:
09
10
2019
pubmed:
7
11
2019
medline:
8
2
2020
entrez:
7
11
2019
Statut:
ppublish
Résumé
Metals are among the most prevalent pollutants released into the environment. For these reasons, the use of biomarkers for environmental monitoring of individuals and populations exposed to metal pollution has gained considerable attention, offering fast and sensitive detection of chemical stress in organisms. There are different metal resistance genes in bacteria that can be used as biomarkers, including cation diffusion facilitators carrying metal ions; the prototype is the cobalt-zinc-cadmium transporter (czcD). The present study reports the expression changes in the czcD gene in Bacillus megaterium and Microbacterium liquefaciens under nickel and vanadium exposure by real-time polymerase chain reaction. The nickel-vanadium-resistant strains of B. megaterium and M. liquefaciens used in this study were isolated from mine tailings in Guanajuato, Mexico. The czcD gene showed high expression under exposure to 200 ppm of Ni and 200 ppm of V during the logarithmic growth phase of M. liquefaciens in PHGII liquid media. In contrast, no changes were observed in B. megaterium during logarithmic and stationary growth, perhaps due to the gene having differential expression during the growth phases. The expression profiles obtained for czcD show the possibility of using this gene from M. liquefaciens as a biomarker of nickel and vanadium pollution in microorganisms.
Identifiants
pubmed: 31692013
doi: 10.1002/jobm.201900323
doi:
Substances chimiques
Environmental Biomarkers
0
Soil Pollutants
0
Vanadium
00J9J9XKDE
Nickel
7OV03QG267
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22-26Subventions
Organisme : CONACyT, Mexico
ID : 131203
Informations de copyright
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
Korneli C, Biedendieck R, David F, Jahn D, Wittmann C. High yield production of extracellular recombinant levansucrase by Bacillus megaterium. Appl Microbiol Biotechnol. 2013;97:3343-53.
Eppinger M, Bunk B, Johns MA, Edirisinghe JN, Kutumbaka KK, Koenig SSK, et al. Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. J Bacteriol. 2011;193:4199-213.
Vary PS. Prime time for Bacillus megaterium. Microbiology. 1994;140:1001-13.
Moore SJ, Mayer MJ, Biedendieck R, Deery E, Warren MJ. Towards a cell factory for vitamin B12 production in Bacillus megaterium: bypassing of the cobalamin riboswitch control elements. N Biotechnol. 2014;31:553-61.
Pal KK, Dey R, Sherathia D, Vanpariya S, Patel I, Dalsania T, et al. Draft genome sequence of a moderately halophilic Bacillus megaterium strain, MSP20.1, isolated from a saltern of the Little Rann of Kutch, India. Genome Announc. 2014;2:e01134-13.
Salgaonkar BB, Mani K, Braganca JM. Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol. 2013;114:1347-56.
Narita M, Chiba K, Nishizawa H, Ishii H, Huang CC, Kawabata Z, et al. Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett. 2003;223:73-82.
Rajkumar M, Ma Y, Freitas H. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J Environ Manag. 2013;128:973-80.
Arenas-Isaac G, Gómez-Ramírez M, Montero-Aviles A, Tobón-Avilés A, Fierros-Romero G, Rojas-Avelizapa NG. Novel microorganisms for the treatment of Ni and V of spent catalysts. Indian J Biotechnol. 2017;16:370-9.
Liu L, Li Y, Zhang J, Zou W, Zhou Z, Liu J, et al. Complete genome sequence of the industrial strain Bacillus megaterium WSH-002. J Bacteriol. 2011;193:6389-90.
Krishnapriya S, Venkatesh Babu DL, G PA. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res. 2015;174:48-55.
Laffineur K, Avesani V, Cornu G, Charlier J, Janssens M, Wauters G, et al. Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. J Clin Microbiol. 2003;41:2242-6.
Abou-Shanab RA, van Berkum P, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 2007;68:360-7.
Yaman M, Ertürk O, Aslan I. Isolation of some pathogenic bacteria from the great spruce bark beetle, Dendroctonus micans and its specific predator, Rhizophagus grandis. Folia Microbiol. 2010;55:35-8.
Lima de Silva AA, de Carvalho MA, de Souza SA, Dias PM, da Silva Filho RG, de Meirelles Saramago CS, et al. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol. 2012;43:1620-31.
Amer AM. Processing of Egyptian boiler-ash for extraction of vanadium and nickel. Waste Manag. 2002;22:515-20.
Hausinger RP. Nickel utilization by microorganisms. Microbiol Rev. 1987;51:22-42.
Bartha R, Ordal EJ. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J Bacteriol. 1965;89:1015-9.
Beolchini F, Fonti V, Ferella F, Vegliò F. Metal recovery from spent refinery catalysts by means of biotechnological strategies. J Hazard Mat. 2010;178:529-34.
Lee CC, Hu Y, Ribbe MW. Vanadium nitrogenase reduces CO. Science. 2010;329:642.
Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf. 2000;45:198-207.
Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol. 1995;43:1112-7.
Schmidt T, Schlegel HG. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol. 1994;176:7045-54.
Kanik-Ennulat C, Neff N. Vanadate-resistant mutants of Saccharomyces cerevisiae show alterations in protein phosphorylation and growth control. Mol Cell Biol. 1990;10:898-909.
Kanik-Ennulat C, Montalvo E, Neff N. Sodium orthovanadate-resistant mutants of Saccharomyces cerevisiae show defects in Golgi-mediated protein glycosylation, sporulation and detergent resistance. Genetics. 1995;140:933-43.
Poster JB, Dean N. The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes. J Biol Chem. 1996;271:3837-45.
Fierros-Romero G, Gómez-Ramírez M, Arenas-Isaac GE, Pless RC, Rojas-Avelizapa NG. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Can J Microbiol. 2016;62:505-13.
Gómez-Ramírez M, Montero-Alvarez LA, Tobon-Aviles A, Fierros-Romero G, Rojas-Avelizapa NG. Microbacterium oxydans and Microbacterium liquefaciens: a biological alternative for the treatment of Ni-V-containing wastes. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50:602-10.
Fu W, Xie W, Zhang Z, Wang S, Wu Q, Liu Y, et al. Exploring valid reference genes for quantitative real-time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int J Biol Sci. 2013;9:792-802.
Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27:313-39.
Cervantes C, Espino-Saldana AE, Acevedo-Aguilar F, Leon-Rodriguez IL, Rivera-Cano ME, Avila-Rodríguez M, et al. Microbial interactions with heavy metals. Rev Latinoam Microbiol. 2006;48:203-10.
Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, et al. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals. 2011;24:1133-51.
Takle GW, Toth IK, Brurberg MB. Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol. 2007;7:50.