Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning.
Aged
Deep Learning
Female
Fluorescein Angiography
/ methods
Fovea Centralis
/ physiopathology
Humans
Male
Nerve Net
/ physiopathology
Perfusion
/ methods
Retinal Vein Occlusion
/ physiopathology
Retinal Vessels
/ physiopathology
Sensitivity and Specificity
Tomography, Optical Coherence
/ methods
Visual Acuity
/ physiology
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
22
04
2019
accepted:
02
10
2019
entrez:
8
11
2019
pubmed:
8
11
2019
medline:
17
3
2020
Statut:
epublish
Résumé
We aimed to assess the ability of deep learning (DL) and support vector machine (SVM) to detect a nonperfusion area (NPA) caused by retinal vein occlusion (RVO) with optical coherence tomography angiography (OCTA) images. The study included 322 OCTA images (normal: 148; NPA owing to RVO: 174 [128 branch RVO images and 46 central RVO images]). Training to construct the DL model using deep convolutional neural network (DNN) algorithms was provided using OCTA images. The SVM used a scikit-learn library with a radial basis function kernel. The area under the curve (AUC), sensitivity and specificity for detecting an NPA were examined. We compared the diagnostic ability (sensitivity, specificity and average required time) between the DNN, SVM and seven ophthalmologists. Heat maps were generated. With regard to the DNN, the mean AUC, sensitivity, specificity and average required time for distinguishing RVO OCTA images with an NPA from normal OCTA images were 0.986, 93.7%, 97.3% and 176.9 s, respectively. With regard to SVM, the mean AUC, sensitivity, and specificity were 0.880, 79.3%, and 81.1%, respectively. With regard to the seven ophthalmologists, the mean AUC, sensitivity, specificity and average required time were 0.962, 90.8%, 89.2%, and 700.6 s, respectively. The DNN focused on the foveal avascular zone and NPA in heat maps. The performance of the DNN was significantly better than that of SVM in all parameters (p < 0.01, all) and that of the ophthalmologists in AUC and specificity (p < 0.01, all). The combination of DL and OCTA images had high accuracy for the detection of an NPA, and it might be useful in clinical practice and retinal screening.
Identifiants
pubmed: 31697697
doi: 10.1371/journal.pone.0223965
pii: PONE-D-19-11408
pmc: PMC6837754
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0223965Déclaration de conflit d'intérêts
The funder, Rist Incorporated, provided support in the form of salary for author HE. This does not alter our adherence to PLOS ONE policies on sharing data and materials. There are no patents, products in development or marketed products to declare.
Références
JAMA Ophthalmol. 2016 Apr;134(4):367-73
pubmed: 26795548
Am J Ophthalmol. 2017 Aug;180:110-116
pubmed: 28579062
Ophthalmology. 2010 Jun;117(6):1124-1133.e1
pubmed: 20381871
JAMA. 2016 Dec 13;316(22):2402-2410
pubmed: 27898976
PLoS One. 2019 May 21;14(5):e0217293
pubmed: 31112591
Sci Rep. 2017 May 31;7(1):2575
pubmed: 28566760
Ophthalmology. 2016 Nov;123(11):2352-2367
pubmed: 27523615
Int J Ophthalmol. 2019 Jan 18;12(1):94-99
pubmed: 30662847
Opt Express. 2012 Feb 13;20(4):4710-25
pubmed: 22418228
Sci Rep. 2016 May 23;6:26286
pubmed: 27212078
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Analyst. 2010 Feb;135(2):230-67
pubmed: 20098757
Invest Ophthalmol Vis Sci. 2015 May;56(5):2790-7
pubmed: 25414186
Ophthalmology. 2011 Oct;118(10):2041-9
pubmed: 21715011
Acta Paediatr. 2007 May;96(5):644-7
pubmed: 17376185
IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40
pubmed: 25423647
PLoS One. 2017 Apr 24;12(4):e0176404
pubmed: 28437483
Biomed Opt Express. 2018 Oct 02;9(11):5147-5158
pubmed: 30460119
PLoS One. 2018 Mar 7;13(3):e0193321
pubmed: 29513718
Ophthalmology. 2010 Jun;117(6):1094-1101.e5
pubmed: 20430447
Curr Diab Rep. 2016 Dec;16(12):123
pubmed: 27766583
Br J Ophthalmol. 2018 Sep;102(9):1226-1231
pubmed: 29259019
Neural Netw. 1999 Jan;12(1):145-151
pubmed: 12662723
Am J Ophthalmol. 2013 Mar;155(3):429-437.e7
pubmed: 23218699
Clin Exp Optom. 2014 Jul;97(4):311-23
pubmed: 24256639
Radiology. 2018 May;287(2):658-666
pubmed: 29267145
J Nerv Ment Dis. 1976 Nov;163(5):307-17
pubmed: 978187
Sci Rep. 2016 Dec 12;6:38897
pubmed: 27941946
J Ophthalmol. 2018 Nov 1;2018:1875431
pubmed: 30515316
Ophthalmology. 2017 Jul;124(7):962-969
pubmed: 28359545
Am J Ophthalmol. 2016 Jan;161:126-32.e1
pubmed: 26454243
Ophthalmology. 2011 Aug;118(8):1594-602
pubmed: 21684606
Radiology. 1982 Apr;143(1):29-36
pubmed: 7063747
Ophthalmology. 2010 Feb;117(2):313-9.e1
pubmed: 20022117
Br J Ophthalmol. 2013 Mar;97(3):278-84
pubmed: 23298885
PLoS One. 2017 Sep 14;12(9):e0184554
pubmed: 28910352
Retina. 2015 Nov;35(11):2377-83
pubmed: 26457396
Sci Rep. 2017 Aug 25;7(1):9425
pubmed: 28842613
Invest Ophthalmol Vis Sci. 2010 Jun;51(6):3205-9
pubmed: 20071683
Ophthalmology. 2012 May;119(5):1024-32
pubmed: 22440275
Am J Ophthalmol. 2016 Jan;161:160-71.e1-2
pubmed: 26476211
Ophthalmology. 2012 Apr;119(4):802-9
pubmed: 22301066
Curr Drug Targets. 2016;17(3):328-36
pubmed: 26073857