Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient.

Biodiversity environmental variance extinction risk stochastic model storage effect temporal niche partitioning

Journal

Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949

Informations de publication

Date de publication:
Jan 2020
Historique:
received: 28 05 2019
revised: 04 07 2019
accepted: 29 09 2019
pubmed: 8 11 2019
medline: 18 12 2019
entrez: 8 11 2019
Statut: ppublish

Résumé

Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.

Identifiants

pubmed: 31698546
doi: 10.1111/ele.13412
doi:

Types de publication

Letter

Langues

eng

Sous-ensembles de citation

IM

Pagination

160-171

Subventions

Organisme : ISF-NRF Singapore joint research program
ID : WBS R-154-000-B09-281
Organisme : the Rockefeller Foundation
Organisme : the John Merck Fund
Organisme : the John D. and Catherine T. MacArthur Foundation
Organisme : Andrew W. Mellon Foundation
Organisme : the Frank Levinson Family Foundation
Organisme : National Science Foundation
ID : DEB-1545761

Informations de copyright

© 2019 John Wiley & Sons Ltd/CNRS.

Références

Adler, P.B. & Drake, J.M. (2008). Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat., 172, E186-E195.
Adler, P.B., HilleRisLambers, J., Kyriakidis, P.C., Guan, Q., Levine, J.M., et al. (2006). Climate variability has a stabilizing effect on coexistence of prairie grasses. Proc. Natl Acad. Sci. USA, 103, 12793-12798.
Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C., Wright, S.J., et al. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol., 21, 528-549.
Angert, A.L., Huxman, T.E., Chesson, P. & Venable, L. (2009). Functional tradeoffs determine species coexistence via the storage effect. Proc. Natl Acad. Sci. USA, 106, 11641-11645.
Baker, P.J., Bunyavejchewin, S. & Robinson, A.P. (2008). The impacts of large-scale, low-intensity fires on the forests of continental Southeast Asia. Int. J. Wildland Fire, 17, 782-792.
Barabás, G., D’Andrea, R. & Stump, S.M. (2018). Chesson’s coexistence theory. Ecol. Monogr., 88, 277-303.
Bever, J.D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol., 157, 465-473.
Bever, J.D., Westover, K.M. & Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol., 85, 561-573.
Cáceres, C.E. (1997). Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc. Natl Acad. Sci. USA, 94, 9171-9175.
Chesson, P. (1994). Multispecies competition in variable environments. Theor. Popul. Biol., 45, 227-276.
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 31, 343-366.
Chesson, P. (2018). Updates on mechanisms of maintenance of species diversity. J. Ecol., 106, 1773-1794.
Chisholm, R.A. & O’Dwyer, J.P. (2014). Species ages in neutral biodiversity models. Theor. Popul. Biol., 93, 85-94.
Chisholm, R.A., Condit, R., Rahman, K.A., Baker, P.J., Bunyavejchewin, S., Chen, Y.-Y. et al. (2014). Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett., 17, 855-865.
Condit, R.C. (1998). Tropical Forest Census Plots. Springer-Verlag, Berlin, Germany.
Condit, R., Hubbell, S.P. & Foster, R.B. (1996). Changes in tree species abundance in a Neotropical forest: impact of climate change. J. Trop. Ecol., 12, 231-256.
Condit, R.C., Ashton, P., Bunyavejchewin, S., Dattaraja, H.S., Davies, S., Esufali, S., et al. (2006). The importance of demographic niches to tree diversity. Science, 313, 98-101.
Connell, J.H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds den Boer, P.J., Gradwell, G.R.). Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp. 298-312.
Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
Danino, M., Shnerb, N.M., Azaele, S., Kunin, W.E. & Kessler, D.A. (2016). The effect of environmental stochasticity on species richness in neutral communities. J. Theor. Biol., 409, 155-164.
Danino, M., Kessler, D.A. & Shnerb, N.M. (2018). Stability of two-species communities: drift, environmental stochasticity, storage effect and selection. Theor. Pop. Biol., 119, 57-71.
Fischer, A.G. (1960). Latitudinal variations in organic diversity. Evolution, 14, 64-81.
Fung, T., O’Dwyer, J.P., Rahman, K.A., Fletcher, C.D. & Chisholm, R.A. (2016). Reproducing static and dynamic biodiversity patterns in tropical forests: the critical role of environmental variance. Ecology, 97, 1207-1217.
Gause, G.F. (1934). The Struggle for Existence. Williams & Wilkins, Baltimore, MD.
Gonzalez-Akre, E., Meakem, V., Eng, C.-Y., Tepley, A.J., Bourg, N.A., McShea, W., et al. (2016). Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere, 7, e01595.
Graham, C.H., Moritz, C. & Williams, S.E. (2006). Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA, 103, 632-636.
Grubb, P.J. (1977). The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev. Camb. Philos., 52, 107-145.
HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. & Mayfield, M.M. (2012). Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst., 43, 227-248.
Hogan, J.A., Zimmerman, J.K., Thompson, J., Uriarte, M., Swenson, N.G., Condit, R., et al. (2018). The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests, 9, 404.
Hubbell, S.P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton Univ. Press, Princeton, NJ.
Huntley, B., Midgley, G.F., Barnard, P. & Valdes, P.J. (2014). Suborbital climatic variability and centres of biological diversity in the Cape region of southern Africa. J. Biogeogr., 41, 1338-1351.
Hutchinson, G.E. (1961). The paradox of the plankton. Am. Nat., 95, 137-145.
Janzen, D.H. (1970). Herbivores and the number of tree species in tropical forests. Am. Nat., 104, 501-528.
Kalyuzhny, M., Seri, E., Chocron, R., Flather, C.H., Kadmon, R. & Shnerb, N.M. (2014). Niche versus neutrality: a dynamical analysis. Am. Nat., 184, 439-446.
Kalyuzhny, M., Kadmon, R. & Shnerb, N.M. (2015). A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities. Ecol. Lett., 18, 572-580.
Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat., 142, 911-927.
Leigh, E.G. (1981). The average lifetime of a population in a varying environment. J. Theor. Biol., 90, 213-239.
Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-1967.
Levine, J.M. & HilleRisLambers, J. (2009). The importance of niches for the maintenance of species diversity. Nature, 461, 254-257.
Levine, J.M., Bascompte, J., Adler, P.B. & Allesina, S. (2017). Beyond pairwise mechanisms of species coexistence in complex communities. Nature, 546, 56-64.
Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M.L., Valencia, M.C., Sanchez, E.I., et al. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J. & Wright, S.J. (1999). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121, 293-301.
Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., et al. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett., 10, 315-331.
Palmer, M.W. (1994). Variation in species richness: toward a unification of hypotheses. Folia Geobot. Phytotx., 29, 511-530.
Pianka, E.R. (1966). Latitudinal gradients in species diversity: a review of concepts. Am. Nat., 100, 33-46.
R Development Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ricklefs, R.E. (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167-171.
Ricklefs, R.E. (2004). A comprehensive framework for global patterns in biodiversity. Ecol. Lett., 7, 1-15.
Ricklefs, R.E. & He, F. (2016). Region effects influence local tree species diversity. Proc. Natl Acad. Sci. USA, 113, 674-679.
Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., et al. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science, 295, 1280-1284.
Smith, V.H., Foster, B.L., Grover, J.P., Holt, R.D., Leibold, M.A. & de Noyelles, F. Jr., (2005). Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proc. Natl Acad. Sci. USA, 102, 4393-4396.
Turner, B.L. (2008). Resource partitioning for soil phosphorus: a hypothesis. J. Ecol., 96, 698-702.
Usinowicz, J., Wright, S.J. & Ives, A.R. (2012). Coexistence in tropical forests through asynchronous variation in annual seed production. Ecology, 93, 2073-2084.
Usinowicz, J., Chang-Yang, C.-H., Chen, Y.-Y., Clark, J.S., Fletcher, C., Garwood, N.C., et al. (2017). Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, 550, 105-108.
Vásquez, D.P. & Stevens, R.D. (2004). The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat., 164, E1-E19.
Vellend, M. (2010). Conceptual synthesis in community ecology. Q. Rev. Biol., 85, 183-206.
Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037.
Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. (2007). Patterns of relative species abundance in rainforests and coral reefs. Nature, 450, 45-49.
Wallace, A.R. (1878). Tropical Nature and Other Essays. Macmillan, London, UK.
Yap, S.L., Davies, S.J. & Condit, R. (2016). Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. J. Veg. Sci., 27, 133-143.

Auteurs

Tak Fung (T)

Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.

Ryan A Chisholm (RA)

Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.

Kristina Anderson-Teixeira (K)

Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panamá.
Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA.

Norm Bourg (N)

Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA.

Warren Y Brockelman (WY)

National Biobank of Thailand, BIOTEC, National Science and Technology Development Agency, Science Park, Klong Luang, Pathum Thani, Thailand.
Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.

Sarayudh Bunyavejchewin (S)

Research Office, Department of National Parks, Wildlife and Plant Conservation, Bangkok, 10900, Thailand.

Chia-Hao Chang-Yang (CH)

Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung.

Rutuja Chitra-Tarak (R)

Los Alamos National Laboratory, Los Alamos, P.O. Box 1663, New Mexico, 87545, USA.

George Chuyong (G)

Department of Botany and Plant Physiology, University of Buea, PO Box 63, Buea, SWP, Cameroon.

Richard Condit (R)

Field Museum of Natural History, 1400 S Lake Shore Dr, Chicago, IL, 60605, USA.

Handanakere S Dattaraja (HS)

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.

Stuart J Davies (SJ)

Smithsonian Institution Global Earth Observatory, Center for Tropical Forest Science, Smithsonian Institution, P.O. Box 37012, Washington, 20013, USA.

Corneille E N Ewango (CEN)

Wildlife Conservation Society, Kinshasa/Gombe, DR Congo.

Gary Fewless (G)

Department of Natural and Applied Sciences, Lab Sciences 413, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin, 54311, USA.

Christine Fletcher (C)

Forest Research Institute Malaysia, 52109, Kepong, Selangor Darul Ehsan, Malaysia.

C V Savitri Gunatilleke (CVS)

Faculty of Science, Department of Botany, University of Peradeniya, Peradeniya, 20400, Sri Lanka.

I A U Nimal Gunatilleke (IAUN)

Faculty of Science, Department of Botany, University of Peradeniya, Peradeniya, 20400, Sri Lanka.

Zhanqing Hao (Z)

Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning.

J Aaron Hogan (JA)

International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA.

Robert Howe (R)

Department of Natural and Applied Sciences, Lab Sciences 413, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin, 54311, USA.

Chang-Fu Hsieh (CF)

Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei.

David Kenfack (D)

Smithsonian Institution Global Earth Observatory, Center for Tropical Forest Science, Smithsonian Institution, P.O. Box 37012, Washington, 20013, USA.

YiChing Lin (Y)

Department of Life Science, Tunghai University, Taichung.

Keping Ma (K)

Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing.

Jean-Remy Makana (JR)

Wildlife Conservation Society, Kinshasa/Gombe, DR Congo.

Sean McMahon (S)

Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland, 21037, USA.

William J McShea (WJ)

Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA.

Xiangcheng Mi (X)

Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing.

Anuttara Nathalang (A)

National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand.

Perry S Ong (PS)

Institute of Biology, University of the Philippines, Diliman, Quezon City, Philippines.

Geoffrey Parker (G)

Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland, 21037, USA.

E-Ping Rau (EP)

Master 1 Mention Écologie, Université Toulouse III Paul Sabatier, Toulouse, France.

Jessica Shue (J)

Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland, 21037, USA.

Sheng-Hsin Su (SH)

Forest Management Division, Taiwan Forestry Research Institute, Taipei.

Raman Sukumar (R)

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, 560012, India.

I-Fang Sun (IF)

Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien.

Hebbalalu S Suresh (HS)

Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, 560012, India.

Sylvester Tan (S)

Smithsonian Institution Global Earth Observatory, Center for Tropical Forest Science, Smithsonian Institution, P.O. Box 37012, Washington, 20013, USA.

Duncan Thomas (D)

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.

Jill Thompson (J)

Department of Environmental Science, University of Puerto Rico, P.O. Box 70377, San Juan, PR, 00936-8377, USA.
Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK.

Renato Valencia (R)

Departamento de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Apartado 17-01-2184, Quito, Ecuador.

Martha I Vallejo (MI)

Calle 37, Instituto Alexander von Humboldt, Number 8-40 Mezzanine, Bogotá, Colombia.

Xugao Wang (X)

Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning.

Yunquan Wang (Y)

Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing.

Pushpa Wijekoon (P)

Faculty of Science, Department of Statistics & Computer Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.

Amy Wolf (A)

Department of Natural and Applied Sciences, Lab Sciences 413, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin, 54311, USA.

Sandra Yap (S)

Institute of Arts and Sciences, Far Eastern University Manila, Manila, Philippines.

Jess Zimmerman (J)

Department of Environmental Science, University of Puerto Rico, P.O. Box 70377, San Juan, PR, 00936-8377, USA.

Articles similaires

Perceptions of the neighbourhood food environment and food insecurity of families with children during the Covid-19 pandemic.

Irene Carolina Sousa Justiniano, Matheus Santos Cordeiro, Hillary Nascimento Coletro et al.
1.00
Humans COVID-19 Food Insecurity Cross-Sectional Studies Female
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH