Computationally efficient joint species distribution modeling of big spatial data.
Gaussian process
community modeling
ecological communities
hierarchical modeling of species communities
joint species distribution model
latent factors
spatial statistics
Journal
Ecology
ISSN: 1939-9170
Titre abrégé: Ecology
Pays: United States
ID NLM: 0043541
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
21
10
2018
revised:
24
07
2019
accepted:
23
08
2019
pubmed:
15
11
2019
medline:
26
9
2020
entrez:
15
11
2019
Statut:
ppublish
Résumé
The ongoing global change and the increased interest in macroecological processes call for the analysis of spatially extensive data on species communities to understand and forecast distributional changes of biodiversity. Recently developed joint species distribution models can deal with numerous species efficiently, while explicitly accounting for spatial structure in the data. However, their applicability is generally limited to relatively small spatial data sets because of their severe computational scaling as the number of spatial locations increases. In this work, we propose a practical alleviation of this scalability constraint for joint species modeling by exploiting two spatial-statistics techniques that facilitate the analysis of large spatial data sets: Gaussian predictive process and nearest-neighbor Gaussian process. We devised an efficient Gibbs posterior sampling algorithm for Bayesian model fitting that allows us to analyze community data sets consisting of hundreds of species sampled from up to hundreds of thousands of spatial units. The performance of these methods is demonstrated using an extensive plant data set of 30,955 spatial units as a case study. We provide an implementation of the presented methods as an extension to the hierarchical modeling of species communities framework.
Identifiants
pubmed: 31725922
doi: 10.1002/ecy.2929
pmc: PMC7027487
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e02929Subventions
Organisme : Norges Forskningsråd
ID : 223257
Pays : International
Organisme : Suomen Akatemia
ID : 284601
Pays : International
Organisme : Suomen Akatemia
ID : 308651
Pays : International
Organisme : Suomen Akatemia
ID : 309581
Pays : International
Organisme : Academy of Finland
ID : 284601
Pays : International
Organisme : Academy of Finland
ID : 309581
Pays : International
Organisme : Academy of Finland
ID : 308651
Pays : International
Organisme : Academy of Finland
ID : 223257
Pays : International
Organisme : Research Council of Norway
Pays : International
Informations de copyright
© 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Références
Ecol Evol. 2018 Jan 16;8(4):1974-1983
pubmed: 29468017
Biometrics. 2013 Mar;69(1):19-30
pubmed: 23379832
Ecol Lett. 2017 May;20(5):561-576
pubmed: 28317296
Trends Ecol Evol. 2015 Dec;30(12):766-779
pubmed: 26519235
J Am Stat Assoc. 2016;111(514):800-812
pubmed: 29720777
Biol Rev Camb Philos Soc. 2017 Feb;92(1):169-187
pubmed: 26426308
Ecol Lett. 2009 Feb;12(2):144-54
pubmed: 19143826
J Comput Graph Stat. 2019;28(2):401-414
pubmed: 31543693
Biometrika. 2011 Jun;98(2):291-306
pubmed: 23049129
Ecol Lett. 2007 Aug;10(8):663-72
pubmed: 17594421
Trends Ecol Evol. 2004 Sep;19(9):497-503
pubmed: 16701313
Ecol Appl. 2014 Jul;24(5):990-9
pubmed: 25154092
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848
pubmed: 19750209
Comput Stat Data Anal. 2009 Jun 15;53(8):2873-2884
pubmed: 20016667
J Agric Biol Environ Stat. 2019;24(3):398-425
pubmed: 31496633
Ecology. 2020 Feb;101(2):e02929
pubmed: 31725922