The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis.
Animals
Apoptosis
Capsid Proteins
/ immunology
Cells, Cultured
Fibroblasts
/ cytology
Gene Expression Regulation
Hepatitis Virus, Duck
/ immunology
Hepatitis, Viral, Animal
/ immunology
Immunoglobulin G
/ metabolism
Picornaviridae Infections
/ immunology
Poultry Diseases
/ immunology
Rabbits
Viral Load
Virus Attachment
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 11 2019
14 11 2019
Historique:
received:
05
02
2019
accepted:
30
10
2019
entrez:
16
11
2019
pubmed:
16
11
2019
medline:
3
11
2020
Statut:
epublish
Résumé
Duck hepatitis A virus (DHAV) causes an infectious disease that mainly affects 1- to 4-week-old ducklings, resulting in considerable loss to the duck industry. Although there have been many studies on DHAV in recent years, the effects on host infection and pathogenesis of DHAV-1 remain largely unknown. This study investigated the effects of the DHAV-1 structural protein VP3 on DHAV-1 virus adsorption and apoptosis to explore the role of VP3 in the viral life cycle. The effects of DHAV-1 VP3 and an antibody against the protein on virion adsorption was analyzed by qRT-PCR. The results showed that the virus copy number for the rabbit anti-VP3 IgG-treated group was significantly lower than that for the negative control group but higher than that for the rabbit anti-DHAV-1 IgG-treated group. This result indicates that VP3 mediates DHAV-1 virus adsorption but that it is not the only protein that involved in this process. In addition, a eukaryotic recombinant plasmid, pCAGGS/VP3, was transfected into duck embryo fibroblasts (DEFs), and the apoptotic rate was determined by DAPI staining, the TUNEL assay and flow cytometry. DAPI staining showed nucleus fragmentation and nuclear edge shifting. TUNEL assay results revealed yellow nuclei, and flow cytometry indicated a significant increase in the apoptotic rate. In addition, qRT-PCR revealed increased in the transcriptional levels of the apoptotic caspase-3, -8 and -9, with the largest increase for caspase-3, followed by caspase-9 and caspase-8. Enzyme activity analysis confirmed these results. Furthermore, the VP3 protein decreased the mitochondrial membrane potential, and the transcriptional levels of the proapoptotic factors Bak, Cyt c and Apaf-1 in the mitochondrial apoptotic pathway were significantly upregulated. These data suggest that expression of VP3 in DEFs induces apoptosis and may primarily activate caspase-3-induced apoptosis through mitochondrion-mediated intrinsic pathways. The findings provide scientific data to clarify DHAV-1 infection and pathogenesis.
Identifiants
pubmed: 31727985
doi: 10.1038/s41598-019-53285-0
pii: 10.1038/s41598-019-53285-0
pmc: PMC6856352
doi:
Substances chimiques
Capsid Proteins
0
Immunoglobulin G
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16783Références
Sheng Wu Gong Cheng Xue Bao. 2015 Jan;31(1):96-104
pubmed: 26021083
J Biol Chem. 2004 Dec 10;279(50):52168-74
pubmed: 15466859
Front Cell Infect Microbiol. 2018 Jul 18;8:249
pubmed: 30073153
J Virol Methods. 2008 Oct;153(1):55-60
pubmed: 18611411
Nat Med. 2000 May;6(5):513-9
pubmed: 10802706
Front Microbiol. 2017 Jul 21;8:1373
pubmed: 28785248
Virus Genes. 2017 Dec;53(6):831-839
pubmed: 28600723
Avian Pathol. 2009 Feb;38(1):21-30
pubmed: 19156577
J Microbiol Methods. 2009 Jan;76(1):1-5
pubmed: 18706944
J Virol. 1997 Jul;71(7):5115-23
pubmed: 9188578
J Virol. 2002 Jul;76(13):6577-85
pubmed: 12050370
J Gen Virol. 2006 Nov;87(Pt 11):3307-3316
pubmed: 17030865
Nat Chem Biol. 2013 Feb;9(2):84-9
pubmed: 23292651
Trends Microbiol. 2006 Jan;14(1):28-36
pubmed: 16337385
PLoS One. 2017 Jun 14;12(6):e0178993
pubmed: 28614378
EMBO J. 1999 Feb 1;18(3):543-54
pubmed: 9927414
J Gen Virol. 1987 Jun;68 ( Pt 6):1649-58
pubmed: 3035064
Adv Exp Med Biol. 2013;790:24-41
pubmed: 23884584
Front Immunol. 2018 Aug 24;9:1845
pubmed: 30197639
Virus Res. 2017 Jan 2;227:240-244
pubmed: 27816429
Sci Rep. 2018 Apr 26;8(1):6596
pubmed: 29700351
Virus Genes. 2016 Dec;52(6):780-788
pubmed: 27314270
J Virol Methods. 2016 Oct;236:207-214
pubmed: 27435338
J Virol. 1995 Nov;69(11):7315-8
pubmed: 7474161
Viruses. 2016 Mar 17;8(3):82
pubmed: 26999188
Virology. 2002 Aug 15;300(1):39-49
pubmed: 12202204
Arch Virol. 2007;152(11):2059-72
pubmed: 17701025
Avian Dis. 1969 Nov;13(4):834-46
pubmed: 5391211
Future Microbiol. 2015;10(9):1529-42
pubmed: 26343779
Transbound Emerg Dis. 2018 Feb;65(1):10-15
pubmed: 29076646
Poult Sci. 2014 Sep;93(9):2184-92
pubmed: 25012848
Front Immunol. 2017 Nov 16;8:1574
pubmed: 29201029
Virus Res. 2007 Jun;126(1-2):19-31
pubmed: 17292992
Avian Dis. 2016 Sep;60(3):576-88
pubmed: 27610716
Virus Genes. 2008 Aug;37(1):52-9
pubmed: 18437547
Mol Pathol. 2002 Aug;55(4):214-9
pubmed: 12147709
Biologicals. 2012 Nov;40(6):426-30
pubmed: 23084588
Vet Microbiol. 2008 Oct 15;131(3-4):247-57
pubmed: 18462894
J Virol. 1996 Aug;70(8):5282-7
pubmed: 8764038
Oncotarget. 2017 Jan 31;8(5):7336-7349
pubmed: 28038465
Avian Dis. 1979 Jul-Sep;23(3):715-29
pubmed: 230809
Oncotarget. 2017 Jul 5;8(47):81838-81851
pubmed: 29137226
Nat Rev Microbiol. 2009 Feb;7(2):144-55
pubmed: 19148180
Future Microbiol. 2015;10(4):629-53
pubmed: 25865198
J Virol Methods. 2016 Nov;237:79-85
pubmed: 27577105
Sci Rep. 2017 Nov 24;7(1):16261
pubmed: 29176600
J Virol. 2000 May;74(9):4284-90
pubmed: 10756043
Arch Virol. 2014 May;159(5):905-14
pubmed: 24162826
Nat Rev Microbiol. 2018 Jun;16(6):368-381
pubmed: 29626210