A Dynamic Transcriptional Analysis Reveals IL-6 Axis as a Prominent Mediator of Surgical Acute Response in Non-ischemic Mouse Heart.

heart damage inflammation interleukin 6 kinetical analysis transcriptomics

Journal

Frontiers in physiology
ISSN: 1664-042X
Titre abrégé: Front Physiol
Pays: Switzerland
ID NLM: 101549006

Informations de publication

Date de publication:
2019
Historique:
received: 11 04 2019
accepted: 15 10 2019
entrez: 19 11 2019
pubmed: 19 11 2019
medline: 19 11 2019
Statut: epublish

Résumé

Ischemic heart diseases are a major cause of death worldwide. Different animal models, including cardiac surgery, have been developed over time. Unfortunately, the surgery models have been reported to trigger an important inflammatory response that might be an effect modifier, where involved molecular processes have not been fully elucidated yet. We sought to perform a thorough characterization of the sham effect in the myocardium and identify the interfering inflammatory reaction in order to avoid misinterpretation of the data via systems biology approaches. We combined a comprehensive analytical pipeline of mRNAseq dataset and systems biology analysis to characterize the acute phase response of mouse myocardium at 0 min, 45 min, and 24 h after surgery to better characterize the molecular processes inadvertently induced in sham animals. Our analysis showed that the surgical intervention induced 1209 differentially expressed transcripts (DETs). The clustering of positively co-regulated transcript modules at 45 min fingerprinted the activation of signalization pathways, while positively co-regulated genes at 24 h identified the recruitment of neutrophils and the differentiation of macrophages. In addition, we combined the prediction of transcription factors (TF) regulating DETs with protein-protein interaction networks built from these TFs to predict the molecular network which have induced the DETs. By mean of this retro-analysis of processes upstream gene transcription, we revealed a major role of the Il-6 pathway and further confirmed a significant increase in circulating IL-6 at 45 min after surgery. This study suggests that a strong induction of the IL-6 axis occurs in sham animals over the first 24 h and leads to the induction of inflammation and tissues' homeostasis processes.

Sections du résumé

BACKGROUND BACKGROUND
Ischemic heart diseases are a major cause of death worldwide. Different animal models, including cardiac surgery, have been developed over time. Unfortunately, the surgery models have been reported to trigger an important inflammatory response that might be an effect modifier, where involved molecular processes have not been fully elucidated yet.
OBJECTIVE OBJECTIVE
We sought to perform a thorough characterization of the sham effect in the myocardium and identify the interfering inflammatory reaction in order to avoid misinterpretation of the data via systems biology approaches.
METHODS AND RESULTS RESULTS
We combined a comprehensive analytical pipeline of mRNAseq dataset and systems biology analysis to characterize the acute phase response of mouse myocardium at 0 min, 45 min, and 24 h after surgery to better characterize the molecular processes inadvertently induced in sham animals. Our analysis showed that the surgical intervention induced 1209 differentially expressed transcripts (DETs). The clustering of positively co-regulated transcript modules at 45 min fingerprinted the activation of signalization pathways, while positively co-regulated genes at 24 h identified the recruitment of neutrophils and the differentiation of macrophages. In addition, we combined the prediction of transcription factors (TF) regulating DETs with protein-protein interaction networks built from these TFs to predict the molecular network which have induced the DETs. By mean of this retro-analysis of processes upstream gene transcription, we revealed a major role of the Il-6 pathway and further confirmed a significant increase in circulating IL-6 at 45 min after surgery.
CONCLUSION CONCLUSIONS
This study suggests that a strong induction of the IL-6 axis occurs in sham animals over the first 24 h and leads to the induction of inflammation and tissues' homeostasis processes.

Identifiants

pubmed: 31736788
doi: 10.3389/fphys.2019.01370
pmc: PMC6836931
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1370

Informations de copyright

Copyright © 2019 Badawi, Paccalet, Harhous, Pillot, Augeul, Van Coppenolle, Lachuer, Kurdi, Crola Da Silva, Ovize and Bidaux.

Références

Front Immunol. 2014 Oct 07;5:491
pubmed: 25339958
Blood. 2013 Jun 13;121(24):4930-7
pubmed: 23645836
Neuroscience. 2017 Apr 21;348:212-227
pubmed: 28223241
Front Plant Sci. 2018 Feb 14;9:108
pubmed: 29491871
BMC Bioinformatics. 2010 Feb 18;11:94
pubmed: 20167110
PLoS One. 2016 Dec 9;11(12):e0167195
pubmed: 27936014
Mamm Genome. 2006 Jul;17(7):701-15
pubmed: 16845475
Genome Biol. 2014;15(12):550
pubmed: 25516281
PLoS One. 2014 Jun 03;9(6):e98456
pubmed: 24893162
Nat Protoc. 2012 Mar 01;7(3):562-78
pubmed: 22383036
Am J Physiol. 1985 Mar;248(3 Pt 2):H350-9
pubmed: 3976904
Basic Res Cardiol. 2017 Jan;112(1):4
pubmed: 27995363
J Biol Chem. 2005 Nov 18;280(46):38247-58
pubmed: 16169848
PLoS One. 2013;8(1):e54785
pubmed: 23372767
Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1049-55
pubmed: 10749697
RNA. 2016 Jun;22(6):839-51
pubmed: 27022035
Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15
pubmed: 23203871
PLoS One. 2014 Apr 02;9(4):e93362
pubmed: 24695324
PeerJ. 2014 Sep 23;2:e576
pubmed: 25337456
Bioinformatics. 2003 Sep 1;19(13):1620-7
pubmed: 12967957
Cell Mol Life Sci. 2005 Jan;62(2):188-98
pubmed: 15666090
Hum Mol Genet. 2018 May 1;27(9):1497-1513
pubmed: 29447348
Trends Immunol. 2003 Jan;24(1):25-9
pubmed: 12495721
Cardiovasc Res. 2002 Jan;53(1):31-47
pubmed: 11744011
J Immunol. 2008 Aug 1;181(3):2189-95
pubmed: 18641358
Cell Rep. 2018 Apr 10;23(2):622-636
pubmed: 29642017
Methods Mol Biol. 2007;357:271-96
pubmed: 17172694
Ophthalmol Eye Dis. 2014 Aug 25;6:43-54
pubmed: 25210480
Physiol Genomics. 2006 May 16;25(3):364-74
pubmed: 16554547
Biomed Pharmacother. 2018 Oct;106:303-308
pubmed: 29966974
G3 (Bethesda). 2012 Sep;2(9):987-1002
pubmed: 22973536
Bioinformatics. 2007 Nov 1;23(21):2881-7
pubmed: 17881408
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Trends Immunol. 2011 Oct;32(10):452-60
pubmed: 21839682
BMC Bioinformatics. 2013 Mar 09;14:91
pubmed: 23497356
J Thorac Cardiovasc Surg. 2010 May;139(5):1253-60, 1260.e1-2
pubmed: 20412960
Behav Res Methods. 2007 May;39(2):175-91
pubmed: 17695343
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
J Cardiol. 2012 Aug;60(2):98-110
pubmed: 22512836
Genome Biol. 2013 Apr 25;14(4):R36
pubmed: 23618408
Genome Biol. 2013;14(9):R95
pubmed: 24020486
Mol Med Rep. 2015 May;11(5):3786-93
pubmed: 25606982
Nucleic Acids Res. 2015 Dec 2;43(21):e140
pubmed: 26184878
Genome Biol. 2016 Jan 26;17:13
pubmed: 26813401
Brief Bioinform. 2015 Jan;16(1):59-70
pubmed: 24300110
Brief Bioinform. 2018 Sep 28;19(5):776-792
pubmed: 28334202
J Clin Invest. 2011 Jul;121(7):2736-49
pubmed: 21670502

Auteurs

Sally Badawi (S)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.
Laboratory of Experimental and Clinical Pharmacology, Department of Chemistry and Biochemistry, Doctoral School of Sciences and Technology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.

Alexandre Paccalet (A)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.

Zeina Harhous (Z)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.
Laboratory of Experimental and Clinical Pharmacology, Department of Chemistry and Biochemistry, Doctoral School of Sciences and Technology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.

Bruno Pillot (B)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Lionel Augeul (L)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Fabien Van Coppenolle (F)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Joel Lachuer (J)

ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, University of Lyon, Lyon, France.
Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, France.

Mazen Kurdi (M)

Laboratory of Experimental and Clinical Pharmacology, Department of Chemistry and Biochemistry, Doctoral School of Sciences and Technology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.

Claire Crola Da Silva (C)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Michel Ovize (M)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Gabriel Bidaux (G)

INSERM 1060, INRA 1397, INSA Lyon, CarMeN Laboratory, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
IHU OPeRa, Groupement Hospitalier EST, Bron, France.

Classifications MeSH