BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
21
06
2019
accepted:
06
11
2019
revised:
22
10
2019
pubmed:
20
11
2019
medline:
25
11
2020
entrez:
20
11
2019
Statut:
ppublish
Résumé
BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (Pten
Identifiants
pubmed: 31740786
doi: 10.1038/s41388-019-1106-x
pii: 10.1038/s41388-019-1106-x
pmc: PMC7033044
doi:
Substances chimiques
BRF1 protein, human
0
TATA-Binding Protein Associated Factors
0
PTEN Phosphohydrolase
EC 3.1.3.67
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1797-1806Subventions
Organisme : Prostate Cancer UK
ID : PG10-10
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A17196
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A15151
Pays : United Kingdom
Organisme : Cancer Research UK
ID : A10419
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Références
Goodfellow SJ, Innes F, Derblay LE, MacLellan WR, Scott PH, White RJ. Regulation of RNA polymerase III transcription during hypertrophic growth. EMBO J. 2006;25:1522–33.
doi: 10.1038/sj.emboj.7601040
Arthurs C, Murtaza BN, Thomson C, Dickens K, Henrique R, Patel HRH, et al. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS ONE. 2017;12:e0186047.
doi: 10.1371/journal.pone.0186047
Uemura M, Zheng Q, Koh CM, Nelson WG, Yegnasubramanian S, De Marzo AM. Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene. 2012;31:1254–63.
doi: 10.1038/onc.2011.319
Zhang Y, Wu H, Yang F, Ning J, Li M, Zhao C, et al. Prognostic value of the expression of DNA repair-related biomarkers mediated by alcohol in gastric cancer patients. Am J Pathol. 2018;188:367–77.
doi: 10.1016/j.ajpath.2017.10.010
Zhong Q, Xi S, Liang J, Shi G, Huang Y, Zhang Y, et al. The significance of Brf1 overexpression in human hepatocellular carcinoma. Oncotarget. 2016;7:6243–54.
doi: 10.18632/oncotarget.6668
Fang Z, Yi Y, Shi G, Li S, Chen S, Lin Y, et al. Role of Brf1 interaction with ERalpha, and significance of its overexpression, in human breast cancer. Mol Oncol. 2017;11:1752–67.
doi: 10.1002/1878-0261.12141
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.
doi: 10.3322/caac.21442
Moschini M, Carroll PR, Eggener SE, Epstein JI, Graefen M, Montironi R, et al. Low-risk prostate cancer: identification, management, and outcomes. Eur Urol. 2017;72:238–49.
doi: 10.1016/j.eururo.2017.03.009
Thakur A, Vaishampayan U, Lum LG. Immunotherapy and immune evasion in prostate cancer. Cancers Basel. 2013;5:569–90.
doi: 10.3390/cancers5020569
Bryant G, Wang L, Mulholland DJ. Overcoming oncogenic mediated tumor immunity in prostate cancer. Int J Mol Sci. 2017;18:E1542.
doi: 10.3390/ijms18071542
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. Ann Transl Med. 2016;4:265.
doi: 10.21037/atm.2016.06.26
Afshar-Kharghan V. The role of the complement system in cancer. J Clin Invest. 2017;127:780–9.
doi: 10.1172/JCI90962
Wurzner R. Modulation of complement membrane attack by local C7 synthesis. Clin Exp Immunol. 2000;121:8–10.
doi: 10.1046/j.1365-2249.2000.01263.x
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013;190:3831–8.
doi: 10.4049/jimmunol.1203487
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.
doi: 10.1016/j.ccr.2010.05.026
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.
doi: 10.1126/scisignal.2004088
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.
doi: 10.1158/2159-8290.CD-12-0095
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K et al. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ. 2019;26:2535–50.
Wu X, Wu J, Huang J, Powell WC, Zhang J, Matusik RJ, et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev. 2001;101:61–69.
doi: 10.1016/S0925-4773(00)00551-7
Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis. 2002;32:148–9.
doi: 10.1002/gene.10036
Loveridge CJ, Mui EJ, Patel R, Tan EH, Ahmad I, Welsh M, et al. Increased T-cell infiltration elicited by Erk5 deletion in a pten-deficient mouse model of prostate carcinogenesis. Cancer Res. 2017;77:3158–68.
doi: 10.1158/0008-5472.CAN-16-2565
Garcia-Hernandez ML, Uribe-Uribe NO, Espinosa-Gonzalez R, Kast WM, Khader SA, Rangel-Moreno J. A unique cellular and molecular microenvironment is present in tertiary lymphoid organs of patients with spontaneous prostate cancer regression. Front Immunol. 2017;8:563.
doi: 10.3389/fimmu.2017.00563
Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell. 2014;158:1281–92.
doi: 10.1016/j.cell.2014.08.011
Birch J, Clarke CJ, Campbell AD, Campbell K, Mitchell L, Liko D, et al. The initiator methionine tRNA drives cell migration and invasion leading to increased metastatic potential in melanoma. Biol Open. 2016;5:1371–9.
doi: 10.1242/bio.019075
Clarke CJ, Berg TJ, Birch J, Ennis D, Mitchell L, Cloix C, et al. The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr Biol. 2016;26:755–65.
doi: 10.1016/j.cub.2016.01.045
Graczyk D, White RJ, Ryan KM. Involvement of RNA Polymerase III in Immune Responses. Mol Cell Biol. 2015;35:1848–59.
doi: 10.1128/MCB.00990-14