Combining Dispersion Modeling and Monitoring Data for Community-Scale Air Quality Characterization.
air pollution
dispersion modeling
near-source
rail yard
Journal
Atmosphere
ISSN: 2073-4433
Titre abrégé: Atmosphere (Basel)
Pays: Switzerland
ID NLM: 101562250
Informations de publication
Date de publication:
2019
2019
Historique:
entrez:
20
11
2019
pubmed:
20
11
2019
medline:
20
11
2019
Statut:
ppublish
Résumé
Spatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding of the relative contributions of emissions sources impacting the community. In this study, we combine dispersion modeling and measurements from the Kansas City TRansportation local-scale Air Quality Study (KC-TRAQS) and use data fusion methods to characterize air quality. The KC-TRAQS study produced a rich dataset using both traditional and emerging measurement technologies. We used dispersion modeling to support field study design and analysis. In the study design phase, the presumptive placement of fixed monitoring sites and mobile monitoring routes have been corroborated using a research screening tool C-PORT to assess the spatial and temporal coverage relative to the entire study area extent. In the analysis phase, dispersion modeling was used in combination with observations to help interpret the KC-TRAQS data. We extended this work to use data fusion methods to combine observations from stationary, mobile measurements, and dispersion model estimates.
Identifiants
pubmed: 31741750
doi: 10.3390/atmos10100610
pmc: PMC6859648
mid: NIHMS1541431
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1-610Subventions
Organisme : Intramural EPA
ID : EPA999999
Pays : United States
Déclaration de conflit d'intérêts
Conflicts of Interest: The authors declare no conflict of interest. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The views expressed in this journal article are those of the authors and do not necessarily reflect the views or policies of the US Environmental Protection Agency.
Références
Atmos Environ (1994). 2017 Jan;148:258-265
pubmed: 28848374
Sci Total Environ. 2019 Apr 20;662:347-360
pubmed: 30690369
Int J Environ Res Public Health. 2019 Jun 08;16(11):
pubmed: 31181783
Chemosensors (Basel). 2019 May 27;7(2):26
pubmed: 32704490
Environ Int. 2017 Feb;99:293-302
pubmed: 28038970
Environ Int. 2017 Sep;106:234-247
pubmed: 28668173
J Air Waste Manag Assoc. 2017 May;67(5):582-598
pubmed: 27960634
Am J Public Health. 2011 Dec;101 Suppl 1:S217-23
pubmed: 21836118
Environ Model Softw. 2017;98:21-34
pubmed: 29681760
Air Qual Atmos Health. 2019 Mar 11;12:259-270
pubmed: 32636958
Int J Environ Res Public Health. 2019 Apr 08;16(7):
pubmed: 30965621
Sci Total Environ. 2015 Dec 15;538:905-21
pubmed: 26363146
Int J Environ Res Public Health. 2019 Feb 13;16(4):
pubmed: 30781818
J Air Waste Manag Assoc. 2008 Mar;58(3):451-61
pubmed: 18376647
Environ Sci Technol. 2016 Apr 19;50(8):4393-400
pubmed: 26998937
Sensors (Basel). 2015 Dec 12;15(12):31392-427
pubmed: 26703598