The biology of the adenovirus E1B 55K protein.

DNA replication E1B 55K E1B 55kDa adenovirus cellular transformation mRNA export post-transcriptional processing protein degradation replication compartments viral oncogene

Journal

FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157

Informations de publication

Date de publication:
12 2019
Historique:
received: 07 10 2019
revised: 15 11 2019
accepted: 18 11 2019
pubmed: 27 11 2019
medline: 19 6 2020
entrez: 27 11 2019
Statut: ppublish

Résumé

The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.

Identifiants

pubmed: 31769868
doi: 10.1002/1873-3468.13694
doi:

Substances chimiques

Adenovirus E1B Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3504-3517

Subventions

Organisme : Consejo Nacional de Ciencia y Tecnología
ID : A1-S8696
Pays : International
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : C0013-00267746
Pays : International
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : S0016-280365
Pays : International
Organisme : Alexander von Humboldt-Stiftung
Pays : International

Informations de copyright

© 2019 Federation of European Biochemical Societies.

Références

Cheng PH, Rao XM, Wechman SL, Li XF, McMasters KM and Zhou HS (2015) Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice. BMC Cancer 15, 716.
Baker AT, Aguirre-Hernández C, Halldén G and Parker AL (2018) Designer oncolytic adenovirus: coming of age. Cancers (Basel) 10, 201.
Blackford AN and Grand RJ (2009) Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 83, 4000-4012.
Horridge JJ and Leppard KN (1998) RNA-binding activity of the E1B 55-kilodalton protein from human adenovirus type 5. J Virol 72, 9374-9379.
Martin ME and Berk AJ (1998) Adenovirus E1B 55K represses p53 activation in vitro. J Virol 72, 3146-3154.
Sieber T, Scholz R, Spoerner M, Schumann F, Kalbitzer HR and Dobner T (2011) Intrinsic disorder in the common N-terminus of human adenovirus 5 E1B-55K and its related E1BN proteins indicated by studies on E1B-93R. Virology 418, 133-143.
Tejera B, Lopez RE, Hidalgo P, Cardenas R, Ballesteros G, Rivillas L, French L, Amero C, Pastor N, Santiago A et al. (2019) The human adenovirus type 5 E1B 55 kDa protein interacts with RNA promoting timely DNA replication and viral late mRNA metabolism. PLoS ONE 14, e0214882.
Flint SJ and Gonzalez RA (2003) Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 272, 287-330.
Gonzalez RA and Flint SJ (2002) Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 76, 4507-4519.
Kao CC, Yew PR and Berk AJ (1990) Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179, 806-814.
Yew PR, Kao CC and Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179, 795-805.
Rubenwolf S, Schütt H, Nevels M, Wolf H and Dobner T (1997) Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. J Virol 71, 1115-1123.
Zheng W, Zhang C, Bell EW and Zhang Y (2019) I-TASSER gateway: a protein structure and function prediction server powered by XSEDE. Future Gener Comput Syst 99, 73-85.
Teodoro JG, Halliday T, Whalen SG, Takayesu D, Graham FL and Branton PE (1994) Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. J Virol 68, 776-786.
Endter C, Kzhyshkowska J, Stauber R and Dobner T (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci USA 98, 11312-11317.
Zhao X (2018) SUMO-mediated regulation of nuclear functions and signaling processes. Mol Cell 71, 409-418.
Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H and Dobner T (2013) Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 32, 1626-1637.
Teodoro JG and Branton PE (1997) Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 71, 3620-3627.
Ching W, Dobner T and Koyuncu E (2012) The human adenovirus type 5 E1B 55-kilodalton protein is phosphorylated by protein kinase CK2. J Virol 86, 2400-2415.
Kindsmüller K, Groitl P, Härtl B, Blanchette P, Hauber J and Dobner T (2007) Intranuclear targeting and nuclear export of the adenovirus E1B-55K protein are regulated by SUMO1 conjugation. Proc Natl Acad Sci USA 104, 6684-6689.
Schwartz RA, Lakdawala SS, Eshleman HD, Russell MR, Carson CT and Weitzman MD (2008) Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 82, 9043-9055.
Pennella MA, Liu Y, Woo JL, Kim CA and Berk AJ (2010) Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 84, 12210-12225.
Hidalgo P, Ip WH, Dobner T and Gonzalez RA (2019) The biology of the adenovirus E1B 55K protein. FEBS Lett 593, 3504-3517.
Zantema A, Fransen JA, Davis-Olivier A, Ramaekers FC, Vooijs GP, DeLeys B and Van der Eb AJ (1985) Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142, 44-58.
Miller DL, Rickards B, Mashiba M, Huang W and Flint SJ (2009) The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 83, 3591-3603.
Ornelles DA and Shenk T (1991) Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 65, 424-429.
Liu Y, Shevchenko A, Shevchenko A and Berk AJ (2005) Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 79, 14004-14016.
Leppard KN and Everett RD (1999) The adenovirus type 5 E1b 55K and E4 Orf3 proteins associate in infected cells and affect ND10 components. J Gen Virol 80 (Pt 4), 997-1008.
Lethbridge KJ, Scott GE and Leppard KN (2003) Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 84 (Pt 2), 259-268.
Dobbelstein M, Roth J, Kimberly WT, Levine AJ and Shenk T (1997) Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J 16, 4276-4284.
Goodrum FD, Shenk T and Ornelles DA (1996) Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70, 6323-6335.
Marshall LJ, Moore AC, Ohki M, Kitabayashi I, Patterson D and Ornelles DA (2008) RUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis. J Virol 82, 6395-6408.
Chahal JS, Qi J and Flint SJ (2012) The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells. PLoS Pathog 8, e1002853.
Krätzer F, Rosorius O, Heger P, Hirschmann N, Dobner T, Hauber J and Stauber RH (2000) The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 19, 850-857.
White E and Cipriani R (1990) Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 10, 120-130.
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW and Branton PE (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15, 3104-3117.
Yew PR, Liu X and Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8, 190-202.
Hung G and Flint SJ (2017) Normal human cell proteins that interact with the adenovirus type 5 E1B 55 kDa protein. Virology 504, 12-24.
Babiss LE and Ginsberg HS (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J Virol 50, 202-212.
Babiss LE, Ginsberg HS and Darnell JE Jr (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5, 2552-2558.
Dobner T and Kzhyshkowska J (2001) Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol 259, 25-54.
Gonzalez R, Huang W, Finnen R, Bragg C and Flint SJ (2006) Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 80, 964-974.
Pilder S, Moore M, Logan J and Shenk T (1986) The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6, 470-476.
Bridge E and Ketner G (1990) Interaction of adenoviral E4 and E1b products in late gene expression. Virology 174, 345-353.
Cardoso FM, Kato SE, Huang W, Flint SJ and Gonzalez RA (2008) An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 378, 339-346.
Chahal JS and Flint SJ (2012) Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 86, 3064-3072.
Leppard KN (1993) Selective effects on adenovirus late gene expression of deleting the E1b 55K protein. J Gen Virol 74 (Pt 4), 575-582.
Leppard KN and Shenk T (1989) The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 8, 2329-2336.
Woo JL and Berk AJ (2007) Adenovirus ubiquitin-protein ligase stimulates viral late mRNA nuclear export. J Virol 81, 575-587.
Holm PS, Bergmann S, Jurchott K, Lage H, Brand K, Ladhoff A, Mantwill K, Curiel DT, Dobbelstein M, Dietel M et al. (2002) YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 277, 10427-10434.
Schmid M, Kindsmüller K, Wimmer P, Groitl P, Gonzalez RA and Dobner T (2011) The E3 ubiquitin ligase activity associated with the adenoviral E1B-55K-E4orf6 complex does not require CRM1-dependent export. J Virol 85, 7081-7094.
Yatherajam G, Huang W and Flint SJ (2011) Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor. J Virol 85, 1429-1438.
Hidalgo P, Anzures L, Hernández-Mendoza A, Guerrero A, Wood CD, Valdés M, Dobner T and Gonzalez RA (2016) Morphological, biochemical, and functional study of viral replication compartments isolated from adenovirus-infected cells. J Virol 90, 3411-3427.
Gabler S, Schutt H, Groitl P, Wolf H, Shenk T and Dobner T (1998) E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72, 7960-7971.
Blackford AN, Bruton RK, Dirlik O, Stewart GS, Taylor AM, Dobner T, Grand RJ and Turnell AS (2008) A role for E1B-AP5 in ATR signaling pathways during adenovirus infection. J Virol 82, 7640-7652.
Bachi A, Braun IC, Rodrigues JP, Panté N, Ribbeck K, von Kobbe C, Kutay U, Wilm M, Görlich D, Carmo-Fonseca M et al. (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6, 136-158.
Schreiner S, Wimmer P, Sirma H, Everett RD, Blanchette P, Groitl P and Dobner T (2010) Proteasome-dependent degradation of Daxx by the viral E1B-55K protein in human adenovirus-infected cells. J Virol 84, 7029-7038.
Schreiner S, Bürck C, Glass M, Groitl P, Wimmer P, Kinkley S, Mund A, Everett RD and Dobner T (2013) Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes. Nucleic Acids Res 41, 3532-3550.
Schreiner S, Kinkley S, Burck C, Mund A, Wimmer P, Schubert T, Groitl P, Will H and Dobner T (2013) SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection. PLoS Pathog 9, e1003775.
Burck C, Mund A, Berscheminski J, Kieweg L, Muncheberg S, Dobner T and Schreiner S (2016) KAP1 is a host restriction factor that promotes human adenovirus E1B-55K SUMO modification. J Virol 90, 930-946.
Chahal JS, Gallagher C, DeHart CJ and Flint SJ (2013) The repression domain of the E1B 55-kilodalton protein participates in countering interferon-induced inhibition of adenovirus replication. J Virol 87, 4432-4444.
Schreiner S, Wimmer P and Dobner T (2012) Adenovirus degradation of cellular proteins. Future Microbiol 7, 211-225.
Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T, Conaway RC, Conaway JW and Branton PE (2004) Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 24, 9619-9629.
Harada JN, Shevchenko A, Shevchenko A, Pallas DC and Berk AJ (2002) Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 76, 9194-9206.
Orazio NI, Naeger CM, Karlseder J and Weitzman MD (2011) The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 85, 1887-1892.
Baker A, Rohleder KJ, Hanakahi LA and Ketner G (2007) Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 81, 7034-7040.
Gupta A, Jha S, Engel DA, Ornelles DA and Dutta A (2013) Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA. Oncogene 32, 5017-5025.
Chalabi Hagkarim N, Ryan EL, Byrd PJ, Hollingworth R, Shimwell NJ, Agathanggelou A, Vavasseur M, Kolbe V, Speiseder T, Dobner T et al. (2018) Degradation of a novel DNA damage response protein, tankyrase 1 binding protein 1, following adenovirus infection. J Virol 92, e02034-17.
Dallaire F, Blanchette P, Groitl P, Dobner T and Branton PE (2009) Identification of integrin alpha3 as a new substrate of the adenovirus E4orf6/E1B 55-kilodalton E3 ubiquitin ligase complex. J Virol 83, 5329-5338.
Nazeer R, Qashqari FSI, Albalawi AS, Piberger AL, Tilotta MT, Read ML, Hu S, Davis S, McCabe CJ, Petermann E et al. (2019) Adenovirus E1B-55K targets SMARCAL1 for degradation during infection and modulates cellular DNA replication. J Virol 93, e00402-19.
Fu YR, Turnell AS, Davis S, Heesom KJ, Evans VC and Matthews DA (2017) Comparison of protein expression during wild-type, and E1B-55k-deletion, adenovirus infection using quantitative time-course proteomics. J Gen Virol 98, 1377-1388.
Corbin-Lickfett KA and Bridge E (2003) Adenovirus E4-34 kDa requires active proteasomes to promote late gene expression. Virology 315, 234-244.
Zantema A, Schrier PI, Davis-Olivier A, van Laar T, Vaessen RT and van der Eb AJ (1985) Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol Cell Biol 5, 3084-3091.
Wright J and Leppard KN (2013) The human adenovirus 5 L4 promoter is activated by cellular stress response protein p53. J Virol 87, 11617-11625.
Muller S and Dobner T (2008) The adenovirus E1B-55K oncoprotein induces SUMO modification of p53. Cell Cycle 7, 754-758.
Spurgeon ME and Ornelles DA (2009) The adenovirus E1B 55-kilodalton and E4 open reading frame 6 proteins limit phosphorylation of eIF2alpha during the late phase of infection. J Virol 83, 9970-9982.
Harada JN and Berk AJ (1999) p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 73, 5333-5344.
Babich A, Feldman LT, Nevins JR, Darnell JE Jr and Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination. Mol Cell Biol 3, 1212-1221.
Cuesta R, Xi Q and Schneider RJ (2004) Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein. J Virol 78, 7707-7716.
Cuesta R, Xi Q and Schneider RJ (2000) Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F. EMBO J 19, 3465-3474.
Zhang Y, Feigenblum D and Schneider RJ (1994) A late adenovirus factor induces eIF-4E dephosphorylation and inhibition of cell protein synthesis. J Virol 68, 7040-7050.
Steegenga WT, Van Laar T, Shvarts A, Terleth C, Van der Eb AJ and Jochemsen AG (1995) Distinct modulation of p53 activity in transcription and cell-cycle regulation by the large (54 kDa) and small (21 kDa) adenovirus E1B proteins. Virology 212, 543-554.
Rao XM, Zheng X, Waigel S, Zacharias W, McMasters KM and Zhou HS (2006) Gene expression profiles of normal human lung cells affected by adenoviral E1B. Virology 350, 418-428.
Zheng X, Rao XM, Gomez-Gutierrez JG, Hao H, McMasters KM and Zhou HS (2008) Adenovirus E1B55K region is required to enhance cyclin E expression for efficient viral DNA replication. J Virol 82, 3415-3427.
Turner RL, Groitl P, Dobner T and Ornelles DA (2015) Adenovirus replaces mitotic checkpoint controls. J Virol 89, 5083-5096.
Goodrum FD and Ornelles DA (1997) The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle. J Virol 71, 548-561.
Goodrum FD and Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73, 7474-7488.
Yew PR and Berk AJ (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82-85.
Sabbatini P, Lin J, Levine AJ and White E (1995) Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev 9, 2184-2192.
Shepherd SE, Howe JA, Mymryk JS and Bayley ST (1993) Induction of the cell cycle in baby rat kidney cells by adenovirus type 5 E1A in the absence of E1B and a possible influence of p53. J Virol 67, 2944-2949.
Hutton FG, Turnell AS, Gallimore PH and Grand RJ (2000) Consequences of disruption of the interaction between p53 and the larger adenovirus early region 1B protein in adenovirus E1 transformed human cells. Oncogene 19, 452-462.
Sarnow P, Ho YS, Williams J and Levine AJ (1982) Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28, 387-394.
Liu Y, Colosimo AL, Yang XJ and Liao D (2000) Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol 20, 5540-5553.
Endter C, Härtl B, Spruss T, Hauber J and Dobner T (2005) Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 24, 55-64.
Wimmer P, Berscheminski J, Blanchette P, Groitl P, Branton PE, Hay RT, Dobner T and Schreiner S (2016) PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 35, 69-82.
Berscheminski J, Brun J, Speiseder T, Wimmer P, Ip WH, Terzic M, Dobner T and Schreiner S (2016) Sp100A is a tumor suppressor that activates p53-dependent transcription and counteracts E1A/E1B-55K-mediated transformation. Oncogene 35, 3178-3189.
Härtl B, Zeller T, Blanchette P, Kremmer E and Dobner T (2008) Adenovirus type 5 early region 1B 55-kDa oncoprotein can promote cell transformation by a mechanism independent from blocking p53-activated transcription. Oncogene 27, 3673-3684.
Sieber T and Dobner T (2007) Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 81, 95-105.
Schreiner S, Wimmer P, Groitl P, Chen SY, Blanchette P, Branton PE and Dobner T (2011) Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 85, 8752-8765.
Goodrum FD and Ornelles DA (1998) p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 72, 9479-9490.
Castillo-Villanueva E, Ballesteros G, Schmid M, Hidalgo P, Schreiner S, Dobner T and Gonzalez RA (2014) The Mre11 cellular protein is modified by conjugation of both SUMO-1 and SUMO-2/3 during adenovirus infection. ISRN Virol 2014, 14.
Ching W, Koyuncu E, Singh S, Arbelo-Roman C, Hartl B, Kremmer E, Speiseder T, Meier C and Dobner T (2013) A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog 9, e1003273.
Souquere-Besse S, Pichard E, Filhol O, Legrand V, Rosa-Calatrava M, Hovanessian AG, Cochet C and Puvion-Dutilleul F (2002) Adenovirus infection targets the cellular protein kinase CK2 and RNA-activated protein kinase (PKR) into viral inclusions of the cell nucleus. Microsc Res Tech 56, 465-478.
Hidalgo P and Gonzalez RA (2019) Formation of adenovirus DNA replication compartments. FEBS Lett 593, 3518-3530.
Niemann J and Kuhnel F (2017) Oncolytic viruses: adenoviruses. Virus Genes 53, 700-706.
Stepanenko AA and Chekhonin VP (2018) A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 679, 11-18.
Sievers F and Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27, 135-145.
Brown NP, Leroy C and Sander C (1998) MView: a web-compatible database search or multiple alignment viewer. Bioinformatics 14, 380-381.
Konig C, Roth J and Dobbelstein M (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J Virol 73, 2253-2262.
Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T and Levine AJ (1984) Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 49, 692-700.
Berscheminski J, Wimmer P, Brun J, Ip WH, Groitl P, Horlacher T, Jaffray E, Hay RT, Dobner T and Schreiner S (2014) Sp100 isoform-specific regulation of human adenovirus 5 gene expression. J Virol 88, 6076-6092.
Stracker TH, Carson CT and Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348-352.
Punga T and Akusjarvi G (2000) The adenovirus-2 E1B-55K protein interacts with a mSin3A/histone deacetylase 1 complex. FEBS Lett 476, 248-252.
Higginbotham JM and O'Shea CC (2015) Adenovirus E4-ORF3 targets PIAS3 and together with E1B-55K remodels SUMO interactions in the nucleus and at virus genome replication domains. J Virol 89, 10260-10272.
Muncheberg S, Hay RT, Ip WH, Meyer T, Weiss C, Brenke J, Masser S, Hadian K, Dobner T and Schreiner S (2018) E1B-55K-mediated regulation of RNF4 SUMO-targeted ubiquitin ligase promotes human adenovirus gene expression. J Virol 92, e00164-18.
Maheswaran S, Englert C, Lee SB, Ezzel RM, Settleman J and Haber DA (1998) E1B 55K sequesters WT1 along with p53 within a cytoplasmic body in adenovirus-transformed kidney cells. Oncogene 16, 2041-2050.

Auteurs

Paloma Hidalgo (P)

Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.

Wing Hang Ip (WH)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Thomas Dobner (T)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Ramón A Gonzalez (RA)

Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Killer Cells, Natural Animals Colorectal Neoplasms Decorin Adenoviridae
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Humans Formins Phosphorylation Exosomes Jurkat Cells

Classifications MeSH