Patch repair of deep wounds by mobilized fascia.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
12 2019
Historique:
received: 28 02 2019
accepted: 30 10 2019
pubmed: 30 11 2019
medline: 3 4 2020
entrez: 29 11 2019
Statut: ppublish

Résumé

Mammals form scars to quickly seal wounds and ensure survival by an incompletely understood mechanism

Identifiants

pubmed: 31776510
doi: 10.1038/s41586-019-1794-y
pii: 10.1038/s41586-019-1794-y
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

287-292

Subventions

Organisme : European Research Council
Pays : International

Commentaires et corrections

Type : CommentIn

Références

Marshall, C. D. et al. Cutaneous scarring: basic science, current treatments, and future directions. Adv. Wound Care 7, 29–45 (2018).
doi: 10.1089/wound.2016.0696
Finnerty, C. C. et al. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet 388, 1427–1436 (2016).
doi: 10.1016/S0140-6736(16)31406-4
Morton, L. M. & Phillips, T. J. Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 74, 589–605, quiz 605–606 (2016).
doi: 10.1016/j.jaad.2015.08.068
Do, N. N. & Eming, S. A. Skin fibrosis: models and mechanisms. Curr. Res. Transl. Med. 64, 185–193 (2016).
doi: 10.1016/j.retram.2016.06.003
Sen, C. K. et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17, 763–771 (2009).
doi: 10.1111/j.1524-475X.2009.00543.x
Hinz, B. Myofibroblasts. Exp. Eye Res. 142, 56–70 (2016).
doi: 10.1016/j.exer.2015.07.009
Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).
doi: 10.1038/nature12783
Greenhalgh, S. N., Conroy, K. P. & Henderson, N. C. Healing scars: targeting pericytes to treat fibrosis. QJM 108, 3–7 (2015).
doi: 10.1093/qjmed/hcu067
Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).
doi: 10.1126/science.aai8792
Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).
doi: 10.1126/science.aar2971
Mori, L., Bellini, A., Stacey, M. A., Schmidt, M. & Mattoli, S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp. Cell Res. 304, 81–90 (2005).
doi: 10.1016/j.yexcr.2004.11.011
Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).
doi: 10.1126/science.aaa2151
Jiang, D. et al. Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nat. Cell Biol. 20, 422–431 (2018).
doi: 10.1038/s41556-018-0073-8
Adstrum, S., Hedley, G., Schleip, R., Stecco, C. & Yucesoy, C. A. Defining the fascial system. J. Bodyw. Mov. Ther. 21, 173–177 (2017).
doi: 10.1016/j.jbmt.2016.11.003
Stecco, C. & Schleip, R. A fascia and the fascial system. J. Bodyw. Mov. Ther. 20, 139–140 (2016).
doi: 10.1016/j.jbmt.2015.11.012
Dunkin, C. S. et al. Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Plast. Reconstr. Surg. 119, 1722–1734 (2007).
doi: 10.1097/01.prs.0000258829.07399.f0
Koehler, R. H. et al. Minimal adhesions to ePTFE mesh after laparoscopic ventral incisional hernia repair: reoperative findings in 65 cases. JSLS 7, 335–340 (2003).
pubmed: 14626400 pmcid: 3021335
Rippa, A. L., Kalabusheva, E. P., & Vorotelyak, E., A. Regeneration of dermis: scarring and cells involved. Cells 8, 607 (2019).
doi: 10.3390/cells8060607
Zamir, E. A., Rongish, B. J. & Little, C. D. The ECM moves during primitive streak formation—computation of ECM versus cellular motion. PLoS Biol. 6, e247 (2008).
doi: 10.1371/journal.pbio.0060247
Szabó, A., Rupp, P. A., Rongish, B. J., Little, C. D. & Czirók, A. Extracellular matrix fluctuations during early embryogenesis. Phys. Biol. 8, 045006 (2011).
doi: 10.1088/1478-3975/8/4/045006
Aleksandrova, A. et al. Convective tissue movements play a major role in avian endocardial morphogenesis. Dev. Biol. 363, 348–361 (2012).
doi: 10.1016/j.ydbio.2011.12.036
Loganathan, R. et al. Extracellular matrix motion and early morphogenesis. Development 143, 2056–2065 (2016).
doi: 10.1242/dev.127886
Miron-Mendoza, M., Koppaka, V., Zhou, C. & Petroll, W. M. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo. Exp. Cell Res. 319, 2470–2480 (2013).
doi: 10.1016/j.yexcr.2013.06.018
Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).
doi: 10.1038/ncomms11036
Abu-Hijleh, M. F., Roshier, A. L., Al-Shboul, Q., Dharap, A. S. & Harris, P. F. The membranous layer of superficial fascia: evidence for its widespread distribution in the body. Surg. Radiol. Anat. 28, 606–619 (2006).
doi: 10.1007/s00276-006-0142-8
Avelar, J. Regional distribution and behavior of the subcutaneous tissue concerning selection and indication for liposuction. Aesthetic Plast. Surg. 13, 155–165 (1989).
doi: 10.1007/BF01570212
Lockwood, T. E. Superficial fascial system (SFS) of the trunk and extremities: a new concept. Plast. Reconstr. Surg. 87, 1009–1018 (1991).
doi: 10.1097/00006534-199106000-00001

Auteurs

Donovan Correa-Gallegos (D)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Dongsheng Jiang (D)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Simon Christ (S)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Pushkar Ramesh (P)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Haifeng Ye (H)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Juliane Wannemacher (J)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Shruthi Kalgudde Gopal (S)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Qing Yu (Q)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany.

Michaela Aichler (M)

Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany.

Axel Walch (A)

Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany.

Ursula Mirastschijski (U)

Mira-Beau Gender Esthetics, Berlin, Germany.
Wound Repair Unit, CBIB, Department of Biology and Biochemistry, University of Bremen, Bremen, Germany.

Thomas Volz (T)

Department of Dermatology and Allergology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Yuval Rinkevich (Y)

Group Regenerative Biology and Medicine, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany. yuval.rinkevich@helmholtz-muenchen.de.
German Centre for Lung Research (DZL), Munich, Germany. yuval.rinkevich@helmholtz-muenchen.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH