Torin2 Exploits Replication and Checkpoint Vulnerabilities to Cause Death of PI3K-Activated Triple-Negative Breast Cancer Cells.
Apoptosis
/ drug effects
Cell Proliferation
/ drug effects
Female
Humans
Naphthyridines
/ pharmacology
Phosphatidylinositol 3-Kinases
/ metabolism
Phosphoinositide-3 Kinase Inhibitors
/ pharmacology
Proto-Oncogene Proteins c-akt
/ antagonists & inhibitors
Signal Transduction
TOR Serine-Threonine Kinases
/ antagonists & inhibitors
Triple Negative Breast Neoplasms
/ drug therapy
ATR/Chk1
PI3K/AKT/mTOR
Torin2
cell cycle
mitotic catastrophe
polypharmacology
replication catastrophe
replication stress
small molecule drugs
triple-negative breast cancer
Journal
Cell systems
ISSN: 2405-4720
Titre abrégé: Cell Syst
Pays: United States
ID NLM: 101656080
Informations de publication
Date de publication:
22 01 2020
22 01 2020
Historique:
received:
11
10
2018
revised:
11
07
2019
accepted:
04
11
2019
pubmed:
10
12
2019
medline:
9
6
2021
entrez:
9
12
2019
Statut:
ppublish
Résumé
Frequent mutation of PI3K/AKT/mTOR signaling pathway genes in human cancers has stimulated large investments in targeted drugs but clinical successes are rare. As a result, many cancers with high PI3K pathway activity, such as triple-negative breast cancer (TNBC), are treated primarily with chemotherapy. By systematically analyzing responses of TNBC cells to a diverse collection of PI3K pathway inhibitors, we find that one drug, Torin2, is unusually effective because it inhibits both mTOR and other PI3K-like kinases (PIKKs). In contrast to mTOR-selective inhibitors, Torin2 exploits dependencies on several kinases for S-phase progression and cell-cycle checkpoints, thereby causing accumulation of single-stranded DNA and death by replication catastrophe or mitotic failure. Thus, Torin2 and its chemical analogs represent a mechanistically distinct class of PI3K pathway inhibitors that are uniquely cytotoxic to TNBC cells. This insight could be translated therapeutically by further developing Torin2 analogs or combinations of existing mTOR and PIKK inhibitors.
Identifiants
pubmed: 31812693
pii: S2405-4712(19)30387-4
doi: 10.1016/j.cels.2019.11.001
pmc: PMC7000271
mid: NIHMS1546605
pii:
doi:
Substances chimiques
9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo(h)(1,6)naphthyridin-2(1H)-one
0
Naphthyridines
0
Phosphoinositide-3 Kinase Inhibitors
0
MTOR protein, human
EC 2.7.1.1
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
TOR Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
66-81.e11Subventions
Organisme : NCI NIH HHS
ID : U54 CA225088
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA120964
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009172
Pays : United States
Organisme : NHLBI NIH HHS
ID : U54 HL127365
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA006516
Pays : United States
Informations de copyright
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Références
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6870-5
pubmed: 20351298
Cancer Res. 2013 Apr 15;73(8):2574-86
pubmed: 23436801
Cell Syst. 2018 Jun 27;6(6):664-678.e9
pubmed: 29886111
Clin Cancer Res. 2017 Jul 1;23(13):3232-3240
pubmed: 28331049
Nat Rev Cancer. 2010 Feb;10(2):130-7
pubmed: 20094047
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13057-62
pubmed: 18755892
N Engl J Med. 2010 Nov 11;363(20):1938-48
pubmed: 21067385
Cancer Res. 2001 Feb 1;61(3):1065-72
pubmed: 11221834
Cancer Cell. 2015 Jan 12;27(1):97-108
pubmed: 25544637
Cancer Cell. 2015 Jan 12;27(1):109-22
pubmed: 25544636
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4338-47
pubmed: 27402769
Mol Cell Biol. 2017 Feb 15;37(5):
pubmed: 27956700
Clin Cancer Res. 1999 Sep;5(9):2559-65
pubmed: 10499633
N Engl J Med. 2019 May 16;380(20):1929-1940
pubmed: 31091374
Nat Methods. 2016 Jun;13(6):521-7
pubmed: 27135972
Cell. 2008 Feb 8;132(3):487-98
pubmed: 18267078
Cell. 2013 Nov 21;155(5):1088-103
pubmed: 24267891
J Med Chem. 2010 Oct 14;53(19):7146-55
pubmed: 20860370
Nat Struct Mol Biol. 2011 Jun;18(6):721-7
pubmed: 21552262
Nature. 2000 Aug 17;406(6797):747-52
pubmed: 10963602
Nature. 2012 Oct 4;490(7418):61-70
pubmed: 23000897
Nat Rev Clin Oncol. 2016 Nov;13(11):674-690
pubmed: 27184417
Trends Mol Med. 2011 Feb;17(2):88-96
pubmed: 21087899
Clin Cancer Res. 2016 Apr 15;22(8):1932-9
pubmed: 26603258
Mol Cell. 2010 Jul 30;39(2):171-83
pubmed: 20670887
Clin Cancer Res. 2004 Jul 15;10(14):4848-57
pubmed: 15269161
Mol Cancer Ther. 2015 Sep;14(9):2004-13
pubmed: 26141948
J Biol Chem. 2009 Feb 6;284(6):3521-8
pubmed: 19068483
Nat Rev Clin Oncol. 2018 May;15(5):273-291
pubmed: 29508857
Science. 2013 Mar 15;339(6125):1323-8
pubmed: 23429703
Cell Cycle. 2003 Jul-Aug;2(4):339-45
pubmed: 12851486
Cancer Cell. 2006 Dec;10(6):515-27
pubmed: 17157791
Cell. 2013 Oct 10;155(2):369-83
pubmed: 24075009
Mol Cell. 2015 Sep 17;59(6):1011-24
pubmed: 26365377
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20404-9
pubmed: 22143759
Nature. 2018 Mar 1;555(7694):112-116
pubmed: 29466339
Sci Transl Med. 2013 Jul 31;5(196):196ra99
pubmed: 23903756
Curr Oncol. 2015 Feb;22(1):33-48
pubmed: 25684987
Science. 2016 Feb 12;351(6274):728-733
pubmed: 26912861
Nat Cell Biol. 2014 Jan;16(1):2-9
pubmed: 24366029
Nat Med. 2010 Jul;16(7):821-7
pubmed: 20526348
Genes Cancer. 2011 Nov;2(11):1003-8
pubmed: 22737266
Cold Spring Harb Perspect Biol. 2013 Mar 01;5(3):a008904
pubmed: 23457258