Plakophilin 1 enhances MYC translation, promoting squamous cell lung cancer.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
02
09
2019
accepted:
20
11
2019
revised:
06
11
2019
pubmed:
12
12
2019
medline:
12
12
2019
entrez:
12
12
2019
Statut:
ppublish
Résumé
Plakophilin 1 (PKP1) is a member of the arm-repeat (armadillo) and plakophilin gene families and it is an essential component of the desmosomes. Although desmosomes have generally been associated with tumor suppressor functions, we have consistently observed that PKP1 is among the top overexpressed proteins in squamous cell lung cancer. To explore this paradox, we developed in vivo and in vitro functional models of PKP1 gain/loss in squamous cell lung cancer. CRISPR-Cas9 PKP1 knockout severely impaired cell proliferation, but it increased cell dissemination. In addition, PKP1 overexpression increased cell proliferation, cell survival, and in vivo xenograft engraftment. We further investigated the molecular mechanism of the mainly oncogenic function of PKP1 by combining transcriptomics, proteomics, and protein-nucleic acid interaction assays. Interestingly, we found that PKP1 enhances MYC translation in collaboration with the translation initiation complex by binding to the 5'-UTR of MYC mRNA. We propose PKP1 as an oncogene in SqCLC and a novel posttranscriptional regulator of MYC. PKP1 may be a valuable diagnostic biomarker and potential therapeutic target for SqCLC. Importantly, PKP1 inhibition may indirectly target MYC, a primary anticancer target.
Identifiants
pubmed: 31822797
doi: 10.1038/s41388-019-1129-3
pii: 10.1038/s41388-019-1129-3
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5479-5493Commentaires et corrections
Type : ErratumIn
Références
Bender E. Epidemiology: the dominant malignancy. Nature. 2014;513:S2. https://doi.org/10.1038/513S2a .
doi: 10.1038/513S2a
pubmed: 25208070
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492 . Epub 12 Sep 2018.
doi: 10.3322/caac.21492
pubmed: 30207593
pmcid: 30207593
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83:584–94. http://www.ncbi.nlm.nih.gov/pubmed/18452692 .
Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–550. https://doi.org/10.1038/nature13385. Epub 9 July 2014.
doi: 10.1038/nature13385.
Kim HR, Shim HS, Chung JH, Lee YJ, Hong YK, Rha SY. Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement. Cancer. 2012;118:729–739. https://doi.org/10.1002/cncr.26311 . Epub 30 June 2011.
doi: 10.1002/cncr.26311
pubmed: 21720997
Angulo B, Suarez-Gauthier A, Lopez-Rios F, Medina PP, Conde E, Tang M. et al. Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J Pathol. 2008;214:347–56. https://onlinelibrary.wiley.com/doi/abs/10.1002/path.2267 .
Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer. 2011;129:355–64. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.25704 .
Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res. 2012;18:2443–2451. https://doi.org/10.1158/1078-0432.CCR-11-2370 . Epub 8 Mar 2012.
doi: 10.1158/1078-0432.CCR-11-2370
pubmed: 22407829
Hatzfeld M. Plakophilins: multifunctional proteins or just regulators of desmosomal adhesion? Biochim Biophys Acta. 2007;1773:69–77. http://www.sciencedirect.com/science/article/pii/S0167488906000954 .
Krunic AL, Garrod DR, Madani S, Buchanan MD, Clark RE. Immunohistochemical staining for desmogleins 1 and 2 in keratinocytic neoplasms with squamous phenotype: actinic keratosis, keratoacanthoma and squamous cell carcinoma of the skin. Br J Cancer. 1998;77:1275–9. https://www.ncbi.nlm.nih.gov/pubmed/9579833 .
Dusek RL, Attardi LD. Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer. 2011;11:317. https://doi.org/10.1038/nrc3051 .
doi: 10.1038/nrc3051
pubmed: 21508970
pmcid: 3799918
Kundu ST, Gosavi P, Khapare N, Patel R, Hosing AS, Maru GB, et al. Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. Int J Cancer. 2008;123:2303–14. https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.23797 .
Richardson G, Johnson BE. The biology of lung cancer. Semin Oncol. 1993;20:105–27.
pubmed: 8480184
Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P,et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci. 2001;98:13790–5. https://www.pnas.org/content/98/24/13790 .
Hou J, Aerts J, den Hamer B, van IJcken W, den Bakker M, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS ONE. 2010;5:1–12. https://doi.org/10.1371/journal.pone.0010312 .
doi: 10.1371/journal.pone.0010312
TCGA Research Network. 2018. https://cancergenome.nih.gov/ .
Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T, Tsuchiya E, et al. Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res. 2005;65:7102–10. http://cancerres.aacrjournals.org/content/65/16/7102 .
Schmidt A, Langbein L, Rode M, Prätzel S, Zimbelmann R, Franke W. Plakophilins 1a and 1b: Widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components. Cell Tissue Res. 1997;290:481–99.
doi: 10.1007/s004410050956
Clark GJ, Cox AD, Graham SM, Der CJ. Biological assays for Ras transformation. Methods Enzymol. 1995;255:395–412. https://doi.org/10.1016/s0076-6879(95)55042-9 .
Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329. https://doi.org/10.1038/nprot.2007.30 .
doi: 10.1038/nprot.2007.30
pubmed: 17406593
Hatzfeld M, Haffner C, Schulze K, Vinzens U. The function of plakophilin 1 in desmosome assembly and actin filament organization. J Cell Biol. 2000;149:209–22. https://www.ncbi.nlm.nih.gov/pubmed/10747098 .
McGrath JA, McMillan JR, Shemanko CS, Runswick SK, Leigh IM, Lane EB, et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat Genet. 1997;17:240. https://doi.org/10.1038/ng1097-240 .
doi: 10.1038/ng1097-240
pubmed: 9326952
Consortium Gte. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. https://www.ncbi.nlm.nih.gov/pubmed/23715323 .
Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C, et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015;6:570–83. https://www.ncbi.nlm.nih.gov/pubmed/25402435 .
Gomez-Morales M, Camara-Pulido M, Miranda-Leon MT, Sanchez-Palencia A, Boyero L, Gomez-Capilla JA, et al. Differential immunohistochemical localization of desmosomal plaque-related proteins in non-small-cell lung cancer. Histopathology. 2013;63:103–13. https://www.ncbi.nlm.nih.gov/pubmed/23711109 .
Alatas ET, Kara A, Kara M, Dogan G, Baysal O. Ectodermal dysplasia-skin fragility syndrome with a new mutation. Indian J Dermatol Venereol Leprol. 2017;83:476–9. https://www.ncbi.nlm.nih.gov/pubmed/28540868e .
Rietscher K, Wolf A, Hause G, Rother A, Keil R, Magin TM, et al. Growth retardation, loss of desmosomal adhesion, and impaired tight junction function identify a unique role of plakophilin 1 in-vivo. J Invest Dermatol. 2016;136:1471–8. https://doi.org/10.1016/j.jid.2016.03.021 .
doi: 10.1016/j.jid.2016.03.021
pubmed: 27033150
Pirity M, Blanck JK, Schreiber-Agus N. Lessons learned from Myc/Max/Mad knockout mice. Curr Top Microbiol Immunol. 2006;302:205–34. https://www.ncbi.nlm.nih.gov/pubmed/16620030 .
Whitfield JR, Beaulieu M-E, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front cell Dev Biol. 2017;5:10. https://www.ncbi.nlm.nih.gov/pubmed/28280720 .
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://www.ncbi.nlm.nih.gov/pubmed/24157548 .
Munoz WA, Lee M, Miller RK, Ahmed Z, Ji H, Link TM. Plakophilin-3 catenin associates with the ETV1/ER81 transcription factor to positively modulate gene activity. PLoS ONE. 2014;9:e86784. https://doi.org/10.1371/journal.pone.0086784 .eCollection 2014.
doi: 10.1371/journal.pone.0086784
pubmed: 24475179
pmcid: 3903613