Stretching of fibroblast cells on micropatterned gelatin on silicone elastomer.


Journal

Journal of materials chemistry. B
ISSN: 2050-7518
Titre abrégé: J Mater Chem B
Pays: England
ID NLM: 101598493

Informations de publication

Date de publication:
22 01 2020
Historique:
pubmed: 14 12 2019
medline: 7 2 2021
entrez: 14 12 2019
Statut: ppublish

Résumé

Here, the surface of silicone elastomer was modified with photo-reactive gelatin bearing azidophenyl groups. Two types of gelatin were prepared: one by coupling with azidoaniline and the other by coupling with azidobenzoic acid. The silicone surface was hydrolyzed by oxygen plasma and then gelatin was micropatterned on the surface using a photomask. The surface wettability was tuned by these treatments. The thickness of the gelatin layer was measured by a reflective confocal laser microscope, and it was regulated by the amount of gelatin. By immobilization of gelatin on the surface, cell adhesion was significantly enhanced and the enhancement was dependent on the type of modified gelatin. The stripe-pattern immobilization regulated the shape of cells adhered to silicone and high aspect elongation of the cell was observed. Although homogeneously immobilized gelatin showed the same tendency of fibroblasts (perpendicular orientation) against stretching stress as the non-immobilized surface, the micropatterned gelatin resisted such deformation by stretching stress. Microscopic observation showed that cytoskeleton fiber formed, oriented, and resisted the shape change by mechanical stress, although some reorganization of the cell cytoskeleton was observed. The present study shows that cytoskeleton fiber formation and orientation are important for the response to mechanical stress.

Identifiants

pubmed: 31833527
doi: 10.1039/c9tb02203a
doi:

Substances chimiques

Silicone Elastomers 0
Gelatin 9000-70-8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

416-425

Commentaires et corrections

Type : ErratumIn

Auteurs

Stefan Müller (S)

Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. y-ito@riken.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH